Идеи инженера Николы Тесла становятся реальностью



Плазменный канал для передачи энергии на расстояние, о котором когда-то говорил знаменитый инженер Никола Тесла, уже не фантастика. Ученые из Физического института им. П.Н. Лебедева РАН научились создавать плазменные СВЧ-волноводы прямо вдоль своего рабочего коридора. А новый способ транспортировки СВЧ-сигнала в скользящем режиме, разработанный специалистами ФИАН, позволит достичь рекордной дальности – не менее 1 км.

Создание протяженных плазменных структур стало возможным после обнаружения в конце прошлого века нитевидных плазменных следов от мощных ультракоротких лазерных импульсов. Такие плазменные нити или филаменты образуются за счет самофокусировки высокоинтенсивного излучения и ионизации газовой среды (например, атмосферного воздуха), а сам процесс их образования называется филаментацией. Используя этот эффект для лазерного пучка кольцевого сечения (его получают с помощью специальных конических линз – аксиконов или адаптивной оптики), можно из филаментов создать полый цилиндрический плазменный волновод. Если диаметр такого волновода сравним с длиной волны передаваемого СВЧ-излучения, то он будет подобен традиционному металлическому волноводу объемных мод, где распространение сигналов обеспечивается высокой проводимостью стенок. Однако проводимость плазмы намного меньше металлической и СВЧ волны затухают в таком плазменном волноводе всего через несколько метров. Решение проблемы дальности может быть найдено на основе идеи сотрудника ФИАН Гургена Аскарьяна, ещё в 60-х годах прошлого века предложившего создать с помощью ультрафиолетового лазера волновод, в котором СВЧ-излучение отражается от плазменных стенок при скользящих углах падения. Правда, достаточно мощных УФ лазеров для воплощения идеи в то время еще не существовало.
«Эффект полного внутреннего отражения работает, например, в оптических волокнах, когда лазерный импульс без потерь проходит многие десятки, а то и сотни километров благодаря тому, что показатель преломления внешней части волокна несколько меньше, чем в его центре. В плазменном волноводе показатель преломления не ионизованного воздуха в центре немного больше, чем в окружающей плазме. И здесь также есть предельный угол, при котором СВЧ излучение отражается от стенок, не выходя из волновода, хотя какие-то потери за счет поглощения в плазме все же существуют», – рассказывает руководитель работы, ведущий научный сотрудник ФИАН кандидат физико-математических наук Владимир Зворыкин.

«Для получения волновода в экспериментах, – продолжает Владимир Зворыкин, – мы использовали ультрафиолетовое излучение нашего криптон-фторового лазера ГАРПУН. Это мощная лазерная система с энергией излучения около 100 Дж и длительностью импульса 100 нс на длине волны 248 нм. Это излучение хорошо ионизует воздух, так как у него большая энергия квантов – около 5 эВ. В результате, нам впервые удалось продемонстрировать захват и распространение СВЧ излучения с длиной волны 8.5 мм в скользящем плазменном волноводе на расстояние в несколько десятков метров».

Однако несколько десятков метров – далеко не предел. Как выяснил старший научный сотрудник ФИАН, кандидат физико-математических наук Игорь Сметанин, выполнивший подробное теоретическое рассмотрение, для того, чтобы в скользящем плазменном волноводе передавать СВЧ излучение на 1–2 километра, необходимо выполнять два условия – во-первых, поддерживать определенную концентрацию электронов – не менее 10^12-10^13 см^-3, и, во-вторых, выдерживать диаметр волновода как минимум в десять раз больше длины волны передаваемого СВЧ излучения.



Криптон-фторовый лазерный усилитель и оптика для формирования ультрафиолетового кольцевого пучка, используемые для создания плазменного СВЧ-волновода.

Для того, чтобы уменьшить энергетические затраты на формирование столь протяженного плазменного волновода в атмосферном воздухе, было предложено использовать цуг («пакет») ультракоротких УФ лазерных импульсов.
«Для того, чтобы получить большую концентрацию электронов, – объясняет другой участник работы, младший научный сотрудник ФИАН Алексей Левченко, – необходимо повышать интенсивность лазерного излучения. Мы пошли путем сокращения длительности лазерного импульса. Чтобы поддерживать долгоживущий плазменный волновод, учитывая ограниченное время жизни свободного электрона в воздухе, период следования импульсов в цуге должен быть меньше 10 нс».

Для поставленной таким образом задачи криптон-фторовые лазеры подходят идеально – короткое время восстановления усиления в их активной среде позволяет получать цуги импульсов с периодом следования порядка 2 нс. К тому же, кроме «наработки» новых фотоэлектронов, с помощью цуга импульсов можно накапливать электроны, отрывая их от электроотрицательных молекул кислорода.

Использование плазменных СВЧ-волноводов и рупоров может существенно повысить точность и дальность действия радиолокационных устройств. Из других практических применений можно упомянуть активные системы молниезащиты, основанные на возможности управления молниевым разрядом путем создания в атмосфере протяженных проводящих плазменных каналов.

Работа выполнена при финансовой поддержке ООО «Новые энергетические технологии».

Источник

«Нет ничего чудеснее человеческого мозга, нет ничего более изумительного, чем процесс мышления, ничего более драгоценного, чем результаты научных исследований»

Алексей Горький

Научный подход на Google Play

Файлы

Загадки электричества

Черты будущего

Советский коммунизм. Новая цивилизация?

Невидимый мир вирусов