Часы, которые переживут Вселенную



Международная группа ученых предложила экспериментальный дизайн пространственно-временного кристалла.

Представьте себе часы, которые будут показывать наиточнейшее время даже после тепловой смерти Вселенной. Это устройство, т.н. пространственно-временной кристалл или четырехмерный кристалл, который имеет периодические структуры, как во времени, так и в пространстве, лишь с недавних пор обещает стать реальностью.

До сих пор пространственно-временной кристалл существовал только как теоретическое понятие, без сколько-нибудь серьезных представлений о том, как на самом деле его построить. И теперь международная группа ученых во главе с исследователями из Министерства энергетики США (DOE) и Национальной лаборатории Лоренса Беркли (Berkeley Lab) предложила экспериментальный дизайн такого кристалла. Эта модель базируется на электромагнитной ионной ловушке и кулоновском взаимодействии частиц.

Электрическое поле ионной ловушки удерживает частицы на месте, кулоновское же отталкивание приводит их к самопроизвольно образующемуся в пространстве кольцу кристалла. Если подвергнуть его воздействию слабого магнитного поля, кристалл начинает вращение в пространстве, которое никогда не остановится.

Постоянное вращение захваченных полем ионов вводит в систему временной порядок – то есть она начинает повторяться не только в пространстве, но и через определенные интервалы времени. При низших квантово-энергетических состояниях это позволяет сформировать пространственно-временной кристалл. Его временной порядок движения – или хронометраж – будет сохраняться даже тогда, когда вся Вселенная достигнет термодинамического равновесия, «тепловой смерти».

Традиционные 3D кристаллы – это твердотельные структуры из атомов или молекул, соединенные вместе в упорядоченном и повторяющемся узоре. Типичные примеры – кристаллы льда, соли и снежинки. Кристаллизация происходит, когда от молекулярной системы отводится тепло, и пока оно не достигнет своего нижнего энергетического состояния. В определенный момент наименьшей энергии, непрерывная пространственная симметрия ломается, и кристалл приобретает свойство дискретных симметрий. А это означает, что вместо структуры, одинаковой во всех направлениях, возникает то же самое только в нескольких отдельных направлениях.

«Большой прогресс был достигнут за последние несколько десятилетий в изучении захватывающей физики низкоразмерных кристаллических материалов, таких как двумерный графен, одномерные нанотрубки, и нуль-мерные фуллерены, – говорит Тонкан Ли, ведущий автор статьи PRL и научный сотрудник в исследовательской группе д-ра Чжана. – Идея создания кристалла с размерностями выше, чем у обычных 3D-кристаллов, является важным концептуальным прорывом в физике. Нам было очень интересно первыми разработать способ реализации пространственно-временного кристалла».

В то время как 3D кристалл в низшем квантово-энергетическом состоянии разбивается на дискретные симметрии, в четырехмерном кристалле тоже происходит нечто подобное. Там нарушение симметрии ожидается по временной оси кристалла.

По схеме, разработанной Чжаном и Ли с их коллегами, пространственное кольцо захваченных ионов в постоянном вращении, периодически будет воспроизводить себя во времени, образуя временной аналог обычных пространственных кристаллов.

Однако Тонкан Ли отмечает, что предлагаемый ими пространственно-временной кристалл не вечный двигатель, потому что в низшем квантовом состоянии нет выхода энергии вовне, которую можно было бы использовать.

Тем не менее, есть много научных исследований, для которых пространственно-временной кристалл будет иметь неоценимое значение. Если на основе подобного кристалла создать часовой механизм, то он превзойдет по точности лучшие атомные часы.

Существуют вполне практические и важные научные цели для построения пространственно-временного кристалла. С ним ученые будут иметь новые и более эффективные средства для изучения сложных физических свойств и поведения большого числа отдельных частиц, выходящих за рамки коллективных взаимодействий, так называемой физической задачи многих тел.

Пространственно-временной кристалл также может быть использован для изучения явлений в квантовом мире, таких как квантовая спутанность фотонов.

Источник

«Философию и предметы, известные под названием «гуманитарных», по-прежнему преподают так, как если бы Дарвина никогда не было на свете»

Ричард Докинз

Научный подход на Google Play

Файлы

Как мы познаем. Исследование процесса научного познания

Феномен науки. Кибернетический подход к эволюции

Фейнмановские лекции по физике

Нил Стивенсон "Анафем"