Сколько калорий нужно человеку?

Сколько калорий нужно человеку?

Мы сможем по достоинству оценить чудо преобразования энергии, которая не дает пропасть нашей цивилизации, обсудив количество джоулей, участвующих в основных жизненных процессах. Подумайте, например, о том, что за один день организм человека вырабатывает около 10 миллионов джоулей теплового излучения. Если у вас нет жара, ваше тело живет и работает при температуре примерно 37 °C и излучает тепло в форме инфракрасного излучения со средней скоростью около 100 джоулей в секунду, то есть приблизительно 10 миллионов джоулей в день. Этот поток энергии довольно сильно зависит от температуры воздуха и размеров человеческого тела. Чем больше человек, тем больше энергии он излучает за одну секунду. Можно сравнить этот поток с энергией, излучаемой лампочкой; один ватт эквивалентен расходам энергии в один джоуль в секунду, так что 100 джоулей в секунду равняется 100 ваттам, а значит, в среднем люди излучают примерно столько энергии, сколько стоваттная лампочка. Вы не производите такой жар, как лампочка, потому что ваше тепло распределяется на гораздо большую площадь. Кстати, поскольку мощность электрического одеяла всего 50 ватт, очевидно, что зимой вы гораздо быстрее согреетесь, если рядом в постели будет человеческое существо, чем под одеялом.

Существуют десятки разных единиц измерения энергии: британская тепловая единица для кондиционеров; киловатт-часы для электроэнергии; электрон-вольты для атомной энергии; эрги в астрономии. Британская тепловая единица равна приблизительно 1055 джоулям; 1 киловатт-час является эквивалентом 3,6 × 10^6 джоулей; 1 электрон-вольт – 1,6 × 10^–19 джоулей; 1 эрг – 10^–7 джоулей. Очень важная единица энергии, с которой мы все отлично знакомы, безусловно, калория, она равна приблизительно 4,2 джоуля. Так вот, если наши тела генерируют около 10 миллионов джоулей каждый день, то мы затрачиваем ежедневно чуть более 2 миллионов калорий. Но как такое может быть? Человеку нужно потреблять всего 2000 калорий в день. Когда вы видите на упаковках пищевых продуктов слово калории, знайте, что составители этих текстов на самом деле имеют в виду килокалории, то есть тысячу калорий, так как одна калория – очень маленькая единица, это количество энергии, необходимое для повышения температуры одного грамма воды на один градус Цельсия. Следовательно, чтобы излучать 10 миллионов джоулей в день, вы должны ежедневно потреблять примерно 2400 килокалорий (или калорий). И если вы едите намного больше, то рано или поздно за это придется расплачиваться фигурой. Математика неумолима, и это известно большинству из нас, хотя многие стараются этот факт игнорировать.

А как насчет физической активности человека в течение дня? Сколько надо есть, чтобы поддерживать такую деятельность? Нам ведь приходится подниматься по лестнице или, скажем, работать по дому? Ведь домашняя работа может быть довольно утомительной, и мы затрачиваем на нее немало энергии, не так ли? Что ж, боюсь, вас ждет неприятный сюрприз. Это действительно ужасно обидно. Та деятельность, которой мы занимаемся в течение дня, требует ничтожно мало энергии, поэтому при попытке сбалансировать прием пищи ею можно смело пренебречь, если только вы не ходите в спортзал и не тренируетесь там долго и упорно.

Предположим, чтобы подняться на третий этаж, где находится ваш кабинет, вы предпочитаете лестницу лифту. Я знаю много людей, которые, поступая так, чувствуют себя настоящими героями, но проведем несложные подсчеты. Допустим, высота этих трех этажей около 10 метров, и вы преодолеваете ее трижды в день. Будем считать, что ваша масса около 70 килограммов. Сколько энергии потребуется, чтобы три раза подняться по лестнице? Давайте не будем мелочиться – пять раз. Пять раз в день подъем на три этажа. Энергия, которую вы должны для этого выработать, равна mgh, где h – разница высоты между первым и четвертым этажами. Умножаем 70 килограммов (m) на 10 метров в секунду за секунду (g), на 10 метров (h) и на 5, так как вы делаете это пять раз в день, и получаем 35 тысяч джоулей. Сравните это с 10 миллионами джоулей в день, которые излучает ваше тело. Думаете, вам нужно есть немного больше ради этих жалких 35 тысяч джоулей? Забудьте об этом. Это ничто: треть одного процента от общей вырабатываемой вами энергии. Впрочем, данный факт вовсе не мешает современным маркетологам делать абсурдные заявления о новых приспособлениях для сжигания калорий. Например, я буквально сегодня утром, открыв каталог для заказа товаров по почте, предлагающий высококлассные гаджеты, увидел там рекламу специальной утяжеленной одежды и аксессуаров, которые обеспечивают «дополнительное сжигание калорий при нормальной повседневной активности пользователя». Возможно, их ношение поможет вам нарастить мышечную массу или, может, вам нравится ощущать дополнительную тяжесть своих рук и ног (хотя лично мне это кажется странным), но не стоит ожидать, что в результате этих мучений вы заметно похудеете!

Тут проницательный читатель наверняка укажет на то, что мы, конечно же, не можем пять раз в день подниматься по лестнице, не спускаясь по ней. Когда вы идете вниз, 35 тысяч джоулей будут высвобождаться в виде тепла в ваших мышцах, обуви и в полу. Если бы вам пришлось прыгать вниз с третьего этажа, вся накопленная во время подъема по лестнице гравитационная потенциальная энергия преобразовалась бы в кинетическую энергию вашего тела, и вы, скорее всего, сломали бы пару-другую костей. Так что, хотя вам и придется затратить 35 тысяч джоулей, чтобы забраться наверх, спускаясь вниз, вы не получите их обратно в удобной форме, если только не придумаете хитроумного устройства, которое будет принимать вашу кинетическую энергию и преобразовывать ее, скажем, в электричество, то есть делать именно то, что делают гибридные автомобили.

А теперь посмотрим на это с другой стороны. Представьте, что вы распределили хождение по лестнице более чем на десять часов, скажем один-два раза в первой половине дня, два раза – во второй и последний раз ранним вечером. За эти десять часов, или 36 тысяч секунд, вы тратите около 35 тысяч джоулей. Это, честно говоря, абсурдно мало – в среднем около одного ватта. Сравните данный результат со своим телом, излучающим в среднем около 100 джоулей в секунду, или 100 ватт. Как видите, энергия, сжигаемая благодаря хождению по лестнице, очень мала и вряд ли поможет сделать тоньше вашу талию.

Предположим, вы поднимаетесь не по лестнице, а на гору километра полтора высотой. Для этого вам придется генерировать и использовать миллион джоулей – в дополнение к обычной «выработке». А миллион по сравнению с 10 миллионами – величина уже вовсе не такая жалкая и незначительная. После восхождения вы точно почувствуете себя голодным, и теперь вам действительно понадобится больше калорий и, соответственно, пищи. Если вы поднялись на гору за четыре часа, средняя мощность, которую вы выработали (мощность – это количество джоулей в секунду), будет весьма существенной, около 70 ватт (понятно, в течение этих четырех часов). И вот теперь тело посылает мозгу настойчивое сообщение: «Мне нужно хорошенько подкрепиться».

Вы можете подумать, что поскольку использовали на 10 процентов больше энергии по сравнению с вашими обычными 10 миллионами джоулей, то вам надо съесть всего на 10 процентов больше (то есть на 240 калорий), чем вы обычно едите, так как миллион – это 10 процентов от 10 миллионов. Но это не совсем верно, что вы, вероятно, и сами интуитивно понимаете. В этом случае вам нужно съесть намного больше, чем обычно, потому что с точки зрения физики система преобразования пищи в энергию тела не слишком эффективна. Наилучший результат человеческого организма в среднем составляет всего 40 процентов – иными словами, мы превращаем в полезную энергию не более 40 процентов потребленных калорий. Все остальное теряется в виде тепла. И оно должно на что-то расходоваться, поскольку, как мы уже знаем, вся энергия сохраняется. Таким образом, чтобы генерировать дополнительный миллион джоулей энергии и «прокормить» свою страсть к альпинизму, вам нужно потребить около 600 дополнительных калорий, приблизительно один дополнительный прием пищи в день.

Где получить необходимое?

Меня не перестает удивлять, как мало энергии нужно человеку для поддержания жизнедеятельности. Предположим, я решил принять ванну и хочу вычислить, сколько энергии потребуется для нагрева воды. Уравнение очень простое: количество требуемой энергии в килокалориях – это масса воды в килограммах, умноженная на изменение температуры в градусах Цельсия. Таким образом, если моя ванна вмещает около 100 килограммов воды, а температура должна повыситься примерно на 50 °С, значит, чтобы нагреть воду, мне потребуется примерно 5000 килокалорий, или 20 миллионов джоулей энергии. Так что горячая ванна, конечно, дело хорошее, но чтобы ее принять, придется затратить немало энергии. Замечательно, что энергия в США все еще стоит дешево: горячая ванна вам обойдется примерно в полтора доллара. Двести лет назад воду для ванн грели дровами. В килограмме дров содержится около 15 миллионов джоулей, так что для нагрева одной ванны воды нужно сжечь килограмм дров. Но это современные дровяные печи работают с относительно высокой 70-процентной эффективностью, а открытый огонь или печи, которые люди использовали 200 лет назад, преобразовывали древесину в тепло гораздо менее эффективно, и занимало это гораздо больше времени. Для подогрева стокилограммовой ванны требовалось от 5 до 10 килограммов древесины. Неудивительно, что наши предки мылись намного реже, чем мы, и часто вся семья мылась в одной и той же воде.

Приведу еще некоторые цифры, чтобы вы имели лучшее представление об использовании энергии в быту. Обогреватель потребляет примерно 1000 ватт, значит, за один час вы расходуете около 3,6 миллиона джоулей, или, в общепринятых показателях потребления электроэнергии, 1 киловатт-час. Электрическая печь в холодном климате потребляет примерно 2500 ватт, оконный кондиционер – 1500 ватт, а центральная система кондиционирования воздуха – от 5 до 20 киловатт. При температуре 180 °C электрический духовой шкаф использует 2 киловатта, а посудомоечная машина – около 3,5 киловатта. А теперь любопытный факт для сравнения. Настольный компьютер с 17-дюймовым монитором с электронно-лучевой трубкой потребляет 150–350 ватт, а компьютер и монитор в спящем режиме всего 20 ватт, а то и меньше. Самый экономный – радиоприемник, всего 4 ватта. Поскольку в девятивольтовой батарейке около 18 тысяч джоулей, или около 5 ватт-часов, она будет питать ваш радиоприемник в течение немногим более часа.

Идем дальше. На Земле живет более 7 миллиардов человек, которые потребляют около 5 × 10^20 джоулей энергии в год. Даже сегодня, через сорок лет после введения ОПЕК нефтяного эмбарго, 85 процентов наших энергетических потребностей по-прежнему обеспечиваются за счет ископаемых видов топлива: угля, нефти и природного газа. На США, где проживает немногим более 300 миллионов человек, или двадцатая часть населения планеты, приходится пятая часть мирового потребления энергии. И это, к сожалению, чистая правда: мы самые настоящие энергетические мародеры. Кстати, по этой причине я был невероятно рад, когда узнал, что президент Обама назначил министром энергетики лауреата Нобелевской премии по физике Стивена Чу. Если мы хотим решить свои энергетические проблемы, нам действительно необходимо обратить самое пристальное внимание на физику энергии.

Сегодня большие надежды возлагаются на потенциал солнечной энергии, и я обеими руками за активные разработки в данной области. Но мы должны помнить об ограничениях, с которыми непременно при этом столкнемся. Солнце, несомненно, на редкость эффективный источник энергии. Оно вырабатывает 4 × 10^26 ватт (4 × 10^26 джоулей в секунду), и большая часть этих мощностей представляет собой видимый и инфракрасный свет. Поскольку нам известно расстояние между Землей и Солнцем (150 миллионов километров), мы можем вычислить, какая доля этой энергии достигает нашей планеты. Около 1,7 × 10^17 ватт, или около 5 × 10^24 джоулей в год. Если направить солнечную батарею площадью в один квадратный метр прямо на Солнце (в безоблачный день!), до нее дойдет примерно 1200 ватт (я исхожу из того, что около 15 процентов передаваемой мощности отражается и поглощается атмосферой Земли). Ради простоты округляем до 1000 ватт (1 киловатт) на квадратный метр при условии направленности панели прямо на Солнце и полного отсутствия облаков.

Потенциал солнечной энергии поистине огромен. Чтобы собрать количество солнечной энергии, достаточное для общемирового потребления, хватит батареи площадью 2 × 1010 квадратных метра. Это примерно в пять раз больше площади моей родной страны – Нидерландов, отнюдь не самой большой в мире.

Однако не все так просто. Во-первых, сутки делятся на день и ночь, что мы пока не учитывали, так как исходили из того, что Солнце светит всегда. И облака тоже никуда не денешь. И если наши солнечные панели нельзя двигать, они не могут быть все время направлены прямо на Солнце. Имеет значение и то, где именно на Земле вы находитесь. Страны, расположенные на экваторе, получают больше энергии (в них же не зря жарче), чем более северные (расположенные в Северном полушарии) или более южные (в Южном полушарии) страны.

Далее, нужно учесть эффективность устройств для улавливания солнечной энергии. Для этого существует множество разных технологий, и их число постоянно растет, однако максимальная эффективность самых практичных на сегодняшний день кремниевых солнечных батарей (в отличие от изготовленных из дорогостоящих материалов) составляет всего 18 процентов. Конечно, если использовать солнечную энергию для нагрева воды напрямую (не преобразовывая в электроэнергию), эффективность будет значительно выше. Для сравнения скажу, что печи, работающие на жидком топливе, даже не самые современные, могут без особого труда достигать эффективности в 75–80 процентов. Итак, после того как мы примем во внимание все вышеперечисленные ограничивающие факторы, нам потребуется панель площадью более миллиона квадратных километров, то есть в три раза больше площади Германии. И это без учета затрат на строительство батарей и систем для сбора солнечной энергии и преобразования ее в электричество. В настоящее время снабжение электроэнергией благодаря Солнцу обходится примерно в два раза дороже, чем получение ее из ископаемого топлива. И дело не только в заоблачной стоимости преобразования солнечной энергии в электрическую, но и в том, что для реализации такого проекта у нас попросту пока нет технологических возможностей и политической воли. Поэтому еще какое-то время значение солнечной энергии в мировой экономике будет неуклонно повышаться, хотя ее роль относительно невелика.

Впрочем, если начать прямо сейчас, уже в следующие четыре десятилетия мы могли бы сделать огромный шаг вперед. По оценкам Greenpeace International и Международного энергетического агентства, по состоянию на 2009 год при существенной поддержке правительства солнечная энергия могла бы удовлетворять «до 7 процентов мировой потребности в электроэнергии к 2030 году и четвертую часть этих потребностей к 2050 году». А в журнале Scientific American несколько лет назад утверждалось, что революционная программа в этой области и более 400 миллиардов долларов в виде субсидий на протяжении следующих сорока лет приведут к тому, что солнечная энергия обеспечит 69 процентов потребностей в электроэнергии в США и 35 процентов от общей потребности в энергии этой страны.

А как насчет энергии ветра? В конце концов, мы применяем ее с тех пор, как человек построил первую парусную лодку. Ветряные мельницы использовались задолго до появления электроэнергии, может быть, на тысячи лет раньше. И принцип получения энергии у природы и ее преобразования в другой вид энергии для потребления человеком оставался неизменным и в Китае XIII века, и в еще более древнем Иране, и в Европе XX века. Во всех этих странах мельницы помогали людям выполнять самую тяжелую работу: поставляли воду для питья или полива полей или огромными камнями перемалывали в муку зерно. А для работы любой ветряной мельницы необходима энергия ветра – независимо от того, производит она электричество или решает другие задачи.

В качестве источника электроэнергии энергия ветра легкодоступна, возобновляема и не приводит к выбросу в атмосферу Земли загрязняющих газов. В 2009 году объемы выработки энергии данного типа во всем мире достигли 340 тераватт-часов (в тераватт-часе триллион ватт-часов), что составляет около 2 процентов от мирового потребления электроэнергии. И эта отрасль быстро растет; в сущности, производство электроэнергии благодаря энергии ветра удвоилось за последние три года.

Не будем забывать и о ядерной энергии. Прежде всего, она намного более вездесуща, чем многие думают. По сути, она окружает нас повсюду. В оконном стекле содержится радиоактивный калий-40 с периодом полураспада 1,2 миллиарда лет, и энергия, производимая его распадом, вносит свой вклад в нагревание ядра Земли. Весь гелий в атмосфере – результат радиоактивного распада естественных изотопов в земле. То, что мы называем альфа-распадом, на самом деле является излучением ядер гелия из больших неустойчивых ядер.

Я собрал уникальную и очень большую коллекцию посуды Fiestaware – тарелок, мисок, блюдец, чашек и прочего, – которая изготавливалась в Америке начиная с 1930-х годов. Я очень люблю приносить некоторые из тарелок в аудиторию и показывать своим ученикам. В оранжевых тарелках под названием Fiesta red содержится оксид урана, который в те времена был обязательным компонентом керамической глазури. Я подношу к тарелке счетчик Гейгера, и он тут же начинает противно пищать. Это значит, что уран в тарелке радиоактивен и испускает гамма-лучи. После этой демонстрации я всегда приглашаю студентов к себе на обед, но, как ни странно, пока еще никто не принял приглашение.

Деление, или расщепление, тяжелых ядер высвобождает огромное количество энергии, будь то в ядерном реакторе, в котором цепные реакции, расщепляющие ядро урана-235, тщательно контролируются, или в атомной бомбе, в которой цепные реакции неконтролируемы и приводят к огромным разрушениям. Атомная электростанция, производящая около миллиарда джоулей в секунду (109 ватт, или 1000 мегаватт), потребляет около 1027 ядер урана-235 в год, то есть всего около 400 килограммов этого радиоактивного вещества.

Однако уран-235 (99,3 процента – это уран-238) составляет только 0,7 процента природного урана. Поэтому атомные электростанции работают на обогащенном уране; степень обогащения варьируется, но обычно равна 5 процентам. Это означает, что вместо 0,7 процента урана-235 урановые топливные стержни электростанций содержат 5 процентов урана-235. Таким образом, тысячемегаваттный ядерный реактор потребляет около 8000 килограммов урана в год, из которых около 400 килограммов – уран-235. Для сравнения скажу, что электростанция такой же мощности, работающая на ископаемом топливе, потребляет около 5 миллиардов килограммов угля в год.

Обогащение урана – процесс невероятно дорогостоящий: в нем используются тысячи центрифуг. Оружейный уран – это обогащенный по меньшей мере до 85 процентов уран-235. Думаю, теперь вы понимаете, почему мир так обеспокоен деятельностью стран, обогащающих уран до неустановленной степени, и никто не может это проверить!

В атомных электростанциях тепло, вырабатываемое управляемой цепной реакцией, превращает воду в пар, который затем приводит в действие паровую турбину и вырабатывает электричество. Эффективность преобразования ядерной энергии в электричество на атомной электростанции составляет около 35 процентов. Если вы прочли, что ядерная электростанция производит 1000 мегаватт, вы не можете сказать, идет ли речь о 1000 мегаваттах общей мощности (из которых ⅓ преобразуется в электрическую энергию, а ⅔ теряются в виде тепла) или обо всей электроэнергии. Во втором случае суммарная мощность станции составляет около 3000 мегаватт, а это совсем не одно и то же! Вчера в новостях я прочитал, что Иран в скором времени собирается ввести в действие атомную электростанцию, которая будет производить 1000 мегаватт электричества (вот тут все четко и ясно!).

Последние несколько лет в мире растет беспокойство по поводу глобального потепления и попутно усиливается интерес к ядерной энергии, поскольку в отличие от электростанций, работающих на ископаемом топливе, атомные электростанции не выбрасывают в атмосферу огромное количество газов, что ведет к парниковому эффекту. В США уже сегодня работают более ста атомных электростанций, которые производят около 20 процентов потребляемой нами энергии. Во Франции этот показатель составляет около 75 процентов. Если говорить о мире в целом, то около 15 процентов от общего объема потребляемой электроэнергии производится сегодня в ядерных установках. В разных странах действуют разные политики в отношении ядерной энергетики, но для строительства новых заводов потребуется немалая политическая воля и убежденность, вызванная страхом, порожденным печально известными авариями на Три-Майл-Айленд, в Чернобыле и Фукусиме. Кроме того, ядерные электростанции очень дороги: по приблизительным оценкам, их стоимость варьируется от 5–10 миллиардов долларов в США до 2 миллиардов долларов в Китае. И наконец, огромной технологической и политической проблемой было и остается хранение радиоактивных отходов атомных станций.

На земле еще остались огромные запасы ископаемого топлива, однако мы расходуем его гораздо быстрее, чем природа способна воспроизводить. Население планеты тоже продолжает расти, и одновременно во многих быстрорастущих странах, например Китае и Индии, чрезвычайно высокими темпами ведутся разработки в области энергоемких технологий. И изменить это пока никому не под силу, ведь сегодня в мире очень серьезный энергетический кризис. Что же нам со всем этим делать?

Прежде всего, чрезвычайно важно осознать, какое огромное количество энергии мы используем каждый день, и постараться сократить ее потребление. Я лично потребляю энергию довольно скромно, но, поскольку живу в Соединенных Штатах, уверен, что и мое скромное потребление в четыре-пять раз превышает потребление среднего жителя планеты. Я пользуюсь электричеством, отапливаю дом и нагреваю воду газом и готовлю на газе. Я пользуюсь автомобилем – не очень много, но некоторое количество бензина все же сжигаю. Если все это сложить, думаю, получится, что я потребляю в среднем около 100 миллионов джоулей (30 киловатт-часов) в день, из которых около половины приходится на электроэнергию. А это, знаете ли, энергетический эквивалент эксплуатации двух сотен рабов, тяжело работающих на меня по двенадцать часов в день. Только подумайте об этом! В древности такое могли себе позволить лишь самые богатые рабовладельцы. В какие же невероятно роскошные времена мы живем! Двести рабов вкалывают на меня по двенадцать часов в день, без остановки, и все для того, чтобы я мог жить так, как живу. За один киловатт-час электроэнергии, то есть 3,6 миллиона джоулей, я плачу всего 25 центов. Суммарно мой счет за энергию (я включил в него газ и бензин, так как их цена на единицу энергии не слишком сильно отличается) за этих двести рабов составляет в среднем около 225 долларов в месяц – чуть больше одного доллара за одного раба в месяц! Как видите, изменение сознания людей в этом отношении поистине жизненно важно. Но эту задачу нам еще предстоит решить.

Улучшить ситуацию позволит изменение привычек и переход на использование энергосберегающих устройств, например компактных люминесцентных ламп вместо ламп накаливания. Мне лично довелось убедиться в эффекте подобных перемен весьма впечатляющим способом. Расход электроэнергии в моем доме в Кембридже составил 8,860 киловатт-часа в 2005 году и 8,317 киловатт-часа в 2006-м. Сюда входит освещение, кондиционер, стиральная машина и сушилка (для нагрева воды, приготовления пищи и отопления я, как уже говорил, использую газ). А в середине декабря 2006 года мой сын Чак (кстати, основатель некоммерческой организации New Generation Energy) сделал мне замечательный подарок: заменил все лампы накаливания в моем доме (в общей сложности их семьдесят пять) на люминесцентные. И потребление электр ичества резко сократилось – до 5 251 киловатт-часа в 2007 году, 5 184 киловатт-часов в 2008-м и 5 226 киловатт-часов в 2009-м. Это сорокапроцентное сокращение потребления электроэнергии уменьшило мой ежегодный счет почти на 850 долларов. Поскольку в США на одно только освещение приходится около 12 процентов бытового потребления электрической энергии и 25 процентов коммерческого, совершенно очевидно, что это верный путь! Это не только существенно сократит выброс в атмосферу газов, создающих парниковый эффект, но и уменьшит расходы на электроэнергию в каждом домохозяйстве (как это сделал я в своем доме). Однако этого явно недостаточно.

По-моему, единственный способ, который позволит нам выжить, сохранив при этом нынешнее качество жизни, – это разработка ядерного синтеза как надежного и эффективного источника энергии. Речь идет не о делении урана, в результате которого ядра урана и плутония распадаются на части и излучают энергию, питающую ядерные реакторы, а именно о слиянии. В ходе этого процесса атомы водорода объединяются и создают гелий, высвобождая энергию. Ядерный синтез – это процесс, питающий звезды и термоядерные бомбы, самый мощный процесс производства энергии в расчете на единицу массы из всех известных, за исключением столкновения материи и антиматерии, которое, однако, нельзя считать потенциальным генератором энергии.

По довольно трудно объяснимым причинам для термоядерных реакторов подходят только определенные типы водорода (дейтерий и тритий). Дейтерий, ядро которого состоит из одного нейтрона и одного протона, легкодоступен; примерно один из каждых шести тысяч атомов водорода на Земле – дейтерий. Поскольку в наших океанах около миллиарда кубических километров воды, запасы дейтерия, по сути, безграничны. Тритий же в естественном виде на Земле не встречается (это радиоактивный элемент с периодом полураспада около двенадцати лет), но его несложно произвести в ядерных реакторах.

Сложность заключается в создании надежно работающего, практичного и полностью контролируемого ядерного реактора. Пока неясно, удастся ли когда-нибудь его сделать. Чтобы заставить ядра водорода соединиться, нужно создать на Земле температуру в диапазоне 100 миллионов градусов, приближающуюся к температуре ядра звезды.

Ученые бьются над этой задачей уже много лет, и, похоже, все более и более напряженно, ибо все больше правительств постепенно убеждаются в том, что энергетический кризис стал реальностью. Это, безусловно, огромная проблема. Но я оптимист. В конце концов, за долгую профессиональную жизнь я уже не раз становился свидетелем умопомрачительных изменений в своей области деятельности, буквально переворачивавших наши представления о Вселенной с ног на голову. Например, космология, которая прежде базировалась преимущественно на домыслах и совсем немного на науке, теперь стала поистине экспериментальной наукой, позволившей многое узнать о происхождении Вселенной. Фактически мы с вами живем во времена, которые не без оснований называют золотым веком космологии.

Когда я начал заниматься исследованиями в области рентгеновской астрономии, нам было известно лишь о десятке источников рентгеновского излучения в глубоком космосе. Теперь мы знаем о десятках тысяч. Пятьдесят лет назад вычислительные мощности килограммового ноутбука заняли бы большую часть здания МТИ, где находится мой кабинет. Пятьдесят лет назад астрономы полагались в основном на наземные оптические и радиотелескопы – больше практически ничего не было! Сегодня же в нашем распоряжении не только космический телескоп «Хаббл», но и целый ряд рентгеновских спутниковых обсерваторий и обсерваторий для изучения гамма-излучения, и мы используем и строим новые обсерватории для исследования нейтрино! Пятьдесят лет назад даже вероятность гипотезы о некогда произошедшем Большом взрыве ставилась под сомнение. Сейчас же мы не только думаем, что знаем, как выглядела наша Вселенная в первую миллионную долю секунды после него, но и уверенно изучаем астрономические тела возрастом свыше 13 миллиардов лет – объекты, образовавшиеся в первые 500 миллионов лет после Большого взрыва, создавшего нашу Вселенную. Как же я могу на фоне всех этих глобальных открытий и преобразований не быть уверенным в том, что ученые решат задачу контролируемого ядерного синтеза? Я вовсе не намерен упрощать трудности или важность ее скорейшего решения, но считаю, что это лишь вопрос времени.

Отрывок из книги Уолтера Левина, Уоррена Гольдштейна "Глазами физика. От края радуги к границе времени"

«Я плохо представляю, что происходит с людьми: они учатся не путем понимания. Они учатся каким-то другим способом — путем механического запоминания или как-то иначе. Их знания так хрупки!»

Ричард Фейнман

Научный подход на Google Play

Файлы

Безмолвные стражи тайн. Загадки острова Пасхи

Агрессия

Виды психики. На пути к пониманию сознания

Физики продолжают шутить