Учёные приблизились к пониманию природы радиопульсаров



Быстровращающаяся нейтронная звезда в теории (вверху) и на практике (внизу). (Иллюстрации NASA)

Несмотря на то что радиопульсары, чрезвычайно быстровращающиеся нейтронные звёзды, были открыты почти полвека назад, в 1967 году, наши представления о них пока остаются неполными. Два недостающих звена, необходимых для сопоставления теории радиопульсаров с их наблюдениями, заключались в дополнении знаний о процессе формирования и распространения радиоизлучения. Первое звено такого соединения теории и практики — механизм образования излучения пульсара в его магнитосфере — было предложено группой учёных из Физического института имени П. Н. Лебедева РАН (Александром Гуревичем, Яковом Истоминым и Василием Бескиным) чуть больше 20 лет назад.

«Излучение формируется в магнитосфере пульсара, в этом нет никаких сомнений, — рассказывает Яков Истомин. — Заряженные частицы, двигаясь по кривой траектории с ускорением, излучают электромагнитные волны. Но поскольку плотности в магнитосфере большие, то важно найти коллективный механизм излучения, то есть не от одной частицы, а от ансамбля. При этом излучение происходит в фазе, то есть оно когерентно, и его мощность возрастает пропорционально не числу частиц, а их квадрату. Очень важную роль играет также поляризация излучения. Двадцать с лишним лет назад нами была найдена такая неустойчивость, которая приводит к генерации излучения. Мы назвали её изгибно-плазменной».

Второе звено — то, как излучение распространяется, — необходимо было прояснить. Дело в том, что наблюдаемые параметры излучения, такие как средний профиль, поляризация, зависимости спектра от частот, определяются не только механизмом формирования излучения, но и процессом его распространения. Эти волны выходят из магнитосферы нейтронной звезды, характеризующейся очень высокой плотностью, в межзвёздную среду очень низкой плотности, и их параметры формируются именно при этом резком переходе. «Никаких принципиальных физических процессов или эффектов, которые мешали бы понять процесс распространения радиоизлучения пульсаров, нет, — комментирует проблему Василий Бескин. — Это область распространения электромагнитных волн в плазме, но просчитать, как это происходит, до сих пор никто не мог. Дело здесь исключительно в аккуратности учёта всех эффектов и, соответственно, в математической сложности расчётов».

Два года ушло у г-на Бескина и его студента из Московского физико-технического института Александра Филиппова на последовательные расчёты процесса распространения радиоизлучения. В качестве модели использовалась дополненная (и до того многократно подтверждённая) «модель полого конуса». Она заключается в том, что диаграмма направленности радиоизлучения повторяет профиль плотности вторичной электронно-позитронной плазмы, истекающей вдоль открытых магнитных силовых линий от пульсара в пространство. По внешнему виду профиль похож на полый конус, отсюда и название модели.



Схематичная модель полого конуса, на которую опирались исследователи из ФИАНа (иллюстрация АНИ «ФИАН-Информ»).

«При распространении излучения нужно учитывать много эффектов, которыми раньше пренебрегали, — поясняет Василий Бескин. — Один из моментов, которые необходимо было внести в модель, заключается в учёте двулучепреломления магнитоактивной плазмы, в результате чего волны различной поляризации могут по-разному распространяться в магнитосфере нейтронной звезды. Кроме того, до сих пор не всегда последовательно учитывалось связанное с вращением пульсара электрическое поле, которое в области формирования поляризационных характеристик выходящего излучения становится порядка магнитного. Это обусловливает вид тензора диэлектрической проницаемости, гораздо более сложный, чем в обычной плазме. В нашей работе была также выбрана реальная структура магнитного поля, а не поле невозмущённого диполя, как делалось, поскольку дипольное приближение справедливо далеко не во всей рассматриваемой области».

Электронно-позитронная плазма, рождаемая жёсткими гамма-квантами вблизи поверхности нейтронной звезды, истекает из магнитосферы пульсара вдоль магнитных силовых линий. Вот почему, чтобы знать плотность частиц в каждой точке вдоль траектории распространения радиоизлучения, нужно просчитать, как искривилась та или иная магнитная силовая линия.

По словам г-на Бескина, для определения плотности плазмы приходилось в каждой точке вдоль луча интегрировать назад вдоль магнитных силовых линий, чтобы знать, в какой области на поверхности нейтронной звезды частицы начали движение. В предыдущих работах, которые рассматривали вращение простого диполя, а также предполагали, что радиоизлучение распространяется по прямой, многие важные эффекты не могли быть учтены.

Полученные результаты, как полагают физики, помогут продвинуться в понимании природы активности пульсаров и в определении параметров истекающей плазмы. Действительно, воспользовавшись построенной количественной теорией распространения волн и анализируя наблюдаемые профили излучения конкретных радиопульсаров, можно понять, как устроена и сама магнитосфера нейтронной звезды. В настоящее время эти работы ведутся совместно с Пущинской радиоастрономической обсерваторией АКЦ ФИАН, а также группой М. Крамера, директора Института радиоастрономии имени Макса Планка (Германия).

Источник

«Закон не гарантирует обеда, хотя гарантирует обеденный перерыв»

Веслав Брудзиньский

Научный подход на Google Play

Файлы

Nano Sapiens или молчание небес

Психология критического мышления

Ответы верующим

Предвидение науки и пророчества религии