Создан пироэлектрический наногенератор, способный преобразовывать тепловые потери в электричество



Ещё Теофраст в 314 году до н. э. отмечал, что нагрев турмалина ведёт к прилипанию к нему частиц соломы. 2 300 лет спустя группа исследователей из Технологического института Джорджии (США) впервые использовала наблюдавшийся Теофрастом пироэлектрический эффект для генерации электроэнергии из тепла.

Как известно, бóльшая часть энергии на электростанциях уходит в бесполезно теряемое тепло, и лишь меньшая превращается в электричество. Попытки решить проблему предпринимаются давно, но вот успехи…

Термоэлектрические материалы дόроги или имеют слишком низкий КПД, сегнетоэлектрики показывают себя ещё хуже. Основная проблема термоэлектриков в том, что они хороши только тогда, когда один конец термоэлектрика по температуре отличается от другого, что в реальной жизни труднодостижимо: обычно температурный градиент не столь велик, чтобы генерация была выгодна экономически.



Пироэлектрический наногенератор вполне уместен в особо нагревающихся гаджетах вроде iPhone для подпитки основной батареи, если, конечно, удастся отказаться от серебра в его конструкции. (Иллюстрация Ya Yang et al).

Напротив, пироэлектрики работают при любом температурном перепаде: достаточно лишь, чтобы температура менялась — и не важно, в каком направлении.

Пироэлектрики — это, по сути, кристаллические диэлектрики, обладающие самопроизвольной поляризацией при отсутствии внешних воздействий. Пока внешние условия неизменны, спонтанная поляризация незаметна, поскольку создаваемое ею электрическое поле компенсируется полем свободных электрических зарядов, которые «натекают» на поверхность пироэлектрика из его объёма и окружающего воздуха. При изменении температуры величина самопроизвольной поляризации также изменяется, что вызывает появление электрического поля.

Для первого продемонстрированного пироэлектрического наногенератора были использованы нанонити из оксида цинка (ZnO) — широко распространённого материала, применяемого во множестве отраслей (от производства искусственной кожи до изготовления зубных паст).

Наногенератор работает вне зависимости от того, нагревают его или охлаждают: любое изменение температуры ведёт к выработке электричества. Поэтому исследователи полагают, что даже суточные колебания температуры могут быть использованы такими устройствами для производства электроэнергии, которой хватит, чтобы питать удалённые датчики. Не менее эффективным может быть применение таких систем для охлаждения ДВС автомобилей и продуктов сгорания тепловых электростанций, что могло бы существенно повысить КПД как тех, так и других.

Учёные подчёркивают: их пироэлектрический наногенератор показал отличную стабильность, не теряя в эффективности на всём протяжении экспериментов. При этом конверсия тепла в электричество в зависимости от интенсивности изменения внешней температуры менялась у него с 0,05 до 0,08 Вт/м².

По мнению авторов работы, с учётом небольших размеров и стоимости созданных устройств, в условиях сильных колебаний температур, характерных для крупных теплоэлектростанций, они могут показать себя ещё лучше.

Результаты исследования представлены в журнале Nano Letters.

Источник

«Если сложить темное прошлое со светлым будущим, получится серое настоящее»

Михаил Жванецкий

Научный подход на Google Play

Файлы

Элегантная вселенная: суперструны, скрытые размерности и поиски окончательной теории

Тайны мозга. Почему мы во всё верим?

Вычислительная машина и мозг

Возвращение времени. От античной космогонии к космологии будущего