Действительная цепь причин и следствий

Людвиг Больцман

Людвиг Больцман - австрийский физик-теоретик, основатель статистической механики и молекулярно-кинетической теории.

Больцманом получен поистине удивительный результат — величины совершенно различной природы — энтропия и вероятность — оказались связанными друг с другом. Энтропия S — физическая величина, характеризующая состояние тела, в то время как вероятность W была до сих пор понятием чисто математическим. Выводы Больцмана носили дерзкий, новаторский характер, он сделал попытку с помощью математики проникнуть в невидимый и загадочный микромир. При этом второй закон термодинамики утратил свою абсолютную достоверность. Из категории непогрешимых, жестоко определенных законов, дающих при их применении однозначный результат, он переводится в ранг вероятностных законов.

Сразу же возникают вопросы. В какой мере явления, описываемые им, достоверны? Все знают, что вероятность какого-либо события может быть сколь угодно малой или, напротив, сколь угодно большой. В последнем случае можно говорить о практической (!) справедливости закона, но и это не снимает остроты вопроса. Даже если закон верен в 999 999 случаях из 1 000 000, то и тогда есть 1 шанс из 1 000 000, что закон будет нарушен. Но вправе ли мы называть его тогда законом? Как можно смириться с тем, что природа — а второй закон описывает явления природы — допускает и проявления случайности? И хотя вероятность, равная 0,999999, означает практическую достоверность закона, между полной определенностью и сколь угодно большой вероятностью зияет непроходимая пропасть.

Физикам XIX столетия, чье мировоззрение было воспитано на дающих однозначный результат строгих динамических законах ньютоновской механики, пришлось столкнуться с вопросом о том, каков же действительный характер физических законов. Это означало возрождение древнего спора о причинах развития между Демокритом и Эпикуром, о котором мы говорили в первой части книги. Однако теперь этот спор велся на принципиально ином уровне. Физики теперь уже были вооружены суммой накопленных веками экспериментальных и теоретических знаний.

Ценность работы Больцмана «Об отношении второго начала механической теории теплоты и исчисления вероятностей в соответствии с теоремами о тепловом равновесии» (1877) заключается прежде всего в том, что в ней ясно ощущается «необходимость при сколько-нибудь серьезном исследовании доводить дело до такой ступени, когда выступает наружу действительная цепь причин и следствий» (К. А. Тимирязев). Благодаря своей связи с вероятностью закон возрастания энтропии перестал быть достоверным, что на первый взгляд плохо, но именно благодаря этой связи он гораздо больше приобрел в тонкости, чем проиграл в строгости. Понимание того, что возрастание энтропии есть переход системы из менее вероятных состояний в более вероятные, открыло новую грань столь важного физического понятия, как энтропия. В отличие от прежней, описательной термодинамики, игнорирующей внутреннюю структуру термодинамических систем, физика стала приходить к пониманию того, что всякая система представляет собой целый мир, населенный огромным числом частиц. Взаимодействия частиц между собой переводят систему в равновесное состояние, которое оказывается теперь и наиболее вероятным. Отклонение энтропии от ее максимальной величины означает, что система еще не пришла в состояние равновесия.

Существование статистических законов говорит о том, что системы, состоящие из огромного числа индивидуальных частиц, «живут» своей особой жизнью, характеризуются новыми параметрами, которых нет у отдельной частицы. В самом деле, можно ли говорить об отдельной частице, что она не находится в состоянии равновесия? Важно подчеркнуть, что связь между параметрами системы в целом носит однонаправленный характер, она определяет только будущее системы, а не прошлое. Газ с течением времени может перейти из неравновесного состояния только в равновесное, другая возможность принципиально исключается природой. В этом и состоит причина однонаправленного изменения энтропии. Существует громадная качественная разница между выводами, получаемыми на основе однозначных динамических законов и статистических, вероятностных законов. Первые являются законами сохранения (энергии, массы, импульса и т.д.), закономерности второго типа появляются тогда, когда речь идет об исследовании изменений, и здесь наука — вслед за природой! — вынуждена обращаться к вероятностному описанию.

Сами законы не дают однозначных предсказаний, но приобретают новое свойство: они указывают направленность протекающих процессов. Надо признаться в том, что физиками — современниками Больцмана далеко не сразу была признана объективная необходимость существования статистических законов. Статистические законы, говорили они, — это синтез отдельных динамических законов, которые в силу их множества не в состоянии охватить наше сознание. Большинство ученых хотело бы свести статистические законы к элементарным динамическим, вернуться в привычное ложе динамической определенности. Вероятность они хотели рассматривать лишь как меру нашего незнания действительного положения вещей. Задачу науки они видели в том, чтобы дойти до индивидуальных динамических закономерностей, лежащих в основе статистических.

Одна из причин достаточно длительной живучести этих взглядов заключалась в том, что сами статистические законы впервые были получены на основе динамических уравнений механики. Поэтому многие полагали, что динамические законы являются первичными, а статистические — вторичными, производными от механических законов. И все же особенно примечательно то, что крушение механического миропонимания было подготовлено его успехами. Такова объективная диалектика процесса познания. Нетрудно видеть, что означало бы сведение статистических закономерностей к динамическим. Жесткая однозначность есть повторяемость, неизменность одних и тех же видов движения, форм жизни. Случайности же, встречаемые в природе, допускают эволюцию, развитие. Больцман решительно и смело отстаивал свою точку зрения, сражаясь практически в одиночку против многочисленных скептиков. Оспаривались как методы Больцмана, так и результаты, полученные им. На стороне его оппонентов был и авторитет в научном мире, и их влияние на других ученых.

Заслугой Больцмана является то, что он вступил в этот принципиальный и неравный бой. Его точные и весомые аргументы, терпеливое разъяснение своей точки зрения и доказательство ошибочности позиции своих противников очень много значили для победы, в конечном счете, его точки зрения на природу физических закономерностей. Открыв в 33 года существование связи между энтропией и вероятностью, он все последующие годы посвятил отстаиванию и разъяснению результатов своих открытий.

Полемика

Новое толкование второго закона термодинамики, предложенное Больцманом в работе 1877 г., а также вытекающие из него новые идеи о существовании в природе статистических закономерностей долгое время не привлекали к себе серьезного внимания. Возможно, это было связано с тем, что эти идеи намного опережали тогдашний уровень развития физики. Абсолютно отсутствовали какие-либо экспериментальные данные, подтверждающие выводы Больцмана. В системах, состоящих из огромного числа частиц, отклонения различных физических величин от средних значений — флуктуации — очень малы, и именно поэтому законы термодинамики выполняются с большой точностью в явлениях, изучавшихся физиками в конце XIX в. Больцман долгое время работал один, и его работа оставалась сравнительно малоизвестной, в то время как не снижалось число исследований, в которых вновь и вновь делались попытки механического доказательства второго закона, но все они не имели успеха. В 1883 г. русский физик В. А Михельсон (занимающийся такими исследованиями) писал в своем обзоре, что работы Больцмана указывают на невозможность механической трактовки термодинамических процессов.

Единственным физиком, продолжившим и развившим идеи Больцмана, был другой русский физик Н. Н. Пирогов. В 1885-1891 гг. он много работал над проблемой статистического обоснования термодинамики, однако и эти работы, несмотря на содержащийся в них ряд глубоких мыслей, также остались малоизвестными. А ведь в них Н. Н. Пирогов прозорливо утверждал, что «если период до 60-х годов настоящего столетия справедливо может быть назван ньютоновской эрой, эрой изучения закономерного, то с 60-х годов проявляется с особой силой почти во всех областях естествознания новое направление изучения закономерностей случайного».

Явные неудачи обоснования второго закона термодинамики на основе законов механики, новые исследования заставляют физиков разных стран Европы вновь обратить внимание на исследования Больцмана. Его работы тщательно анализируются, содержащийся в них математический аппарат изучается, вытекающие из работ выводы исследуются на внутреннюю непротиворечивость. Как часто бывает при обсуждении нового, анализ работ Больцмана носит скептический, недоверчивый характер. Полемика по поводу результатов работ Больцмана выносится на страницы английского научного журнала «Nature» («Природа»), где в 1895-1896 гг. публикуются как многочисленные работы оппонентов Больцмана, так и его ответы.

Сегодня, по истечении достаточно длительного времени, становится ясно, что эта дискуссия имела в истории физики большое значение, поскольку позволила многим ученым уяснить содержащиеся в работах Больцмана новые идеи, выявить глубокий физический смысл второго закона термодинамики, глубже осознать значение статистических закономерностей в физике. В ходе этих страстных споров непрерывно уточняет свою позицию и сам Больцман, показывая всю мощь своего интеллекта и плодотворность полученных им результатов. В ходе дискуссии, так же как это было при разборе парадокса Лошмидта, Больцман высказывает и развивает новые идеи, масштаб которых выходит далеко за земные рамки, распространяется на всю Вселенную.

Один из оппонентов приводит ряд возражений против достигнутых Больцманом результатов, в основном повторяющих аргументы Лошмидта. В своем ответе Больцман вновь указывает на то, что убывание Н-функции является значительно более вероятным, чем ее возрастание. Он выдвигает теорию флуктуаций, согласно которой Н-функция, достигнув минимума, может колебаться — флуктуировать — относительно своего минимального значения, причем большие отклонения от H(min) будут встречаться, очевидно, значительно реже, чем малые. Для подтверждения своих слов Больцман конструирует простой и убедительный пример, показывающий то, что при таком поведении Н-функции становится гораздо более вероятным ее уменьшение, чем возрастание. Впрочем, предоставим слово самому Больцману.



Рис. 1. H-кривая

«Теперь рассмотрим некоторую ординату Н(1) > H(min) (рис, 1). Возможны два случая. Н(1) может быть весьма близко к вершине возвышенности, так что Н убывает, двигаемся ли мы в положительном или отрицательном направлении вдоль оси, представляюшей время. Второй случай — Н(1) лежит на части кривой, поднимаюшейся на возвышенность или спускающейся с нее. Тогда ординаты по одну сторону Н(1) будут больше, по другую — меньше, чем Н(1). Но так как более высокие возвышенности чрезвычайно маловероятны, первый случай более вероятен, а если мы выбираем ординату данного значения Н(1), руководствуясь случаем, то не обязательно, но весьма вероятно, окажется, что ордината будет убывать при движении в обоих направлениях».

Принципиально иной характер имело другое возражение, основанное на доказанной в 1890 г. французским математиком А. Пуанкаре теореме о том, что механическая система, состоящая из конечного числа точек, спустя достаточно длительное время должна будет еще раз подойти сколь угодно близко к своему первоначальному состоянию (так называемая теорема возврата Пуанкаре). Следовательно, с течением времени обязательно должно повториться любое начальное состояние газа, что означало бы возрастание на определенном промежутке времени H-функции. Поскольку это противоречит достигнутому Больцманом результату о монотонном убывании H-функции, обоснование второго закона термодинамики с помощью представлений молекулярно-кинетической теории невозможно.

Убедительно отвечает на это возражение Больцман. Он рассчитывает время возвращения молекулярной системы в начальное состояние, говоря с математиками на их же математическом языке.

Поскольку в газе объемом 1 см^3 содержится примерно 10^19 молекул (число Лошмидта), то среднее расстояние между молекулами примерно равно 10^-б см. Так как скорости молекул в среднем равны 500 м/с, то каждая молекула в течение 1 с будет испытывать около 10^9 столкновений. Предположив, что возвращение системы в исходное состояние осуществляется тогда, когда различие в положении молекул менее 10^-7 см, а в скорости — 1 м/с, Больцман рассчитывает цикл возврата системы в исходное положение. Это время возврата оказывается примерно равным 300 годам. Далее он рассчитывает при тех же условиях время прихода системы в равновесное состояние, оно равно всего лишь 10^-8 с. Таким образом, показывает он, хотя и вероятность возврата системы в исходное состояние отлична от нуля, но она настолько мала по сравнению с временем перехода системы в равновесное состояние, что «весьма маловероятно, чтобы прошлое вновь возвратилось». Парадокс периодичности, пишет ученый, вовсе не опровергает теории газов, он сам вытекает из ее существа.

Необходимо все же отметить, что эти серьезные контраргументы не были вполне поняты противниками Больцмана. Противоречие между обратимостью механических процессов и необратимостью термодинамических еще продолжало смущать ученых. Больцман уверен в своей правоте. Уступая настояниям своих друзей, он в течение 1896 - 1898 гг. собирает свои исследования воедино и издает двухтомный курс «Лекций по теории газов». В них он уточняет и совершенствует свое доказательство Я-теоремы. Он выступает за расширение статистических представлений, за применение их к твердым и жидким телам:

«Законы вероятностей, которым подчиняются лвижения атомов в твердых и капельно-жидких телах, очевидно, качественно не отличаются от законов, справедливых для газов, так что вычисление функции Н, соответствующей энтропии, для твердых и капельно-жидких тел хотя и связано, быть может, с большими математическими трудностями, но не содержит ничего принципиального».

Реализация программы, намеченной Больцманом, затруднялась в связи с тем, что наглядные физические примеры, подтверждающие его трактовку явлений, в то время полностью отсутствовали. Как не хватало Больцману этого «счастья чувственного восприятия»! Уже после его смерти польский ученый М. Смолуховский, основываясь на предложенных Больцманом флуктуационных представлениях, развил вполне обстоятельную теорию флуктуаций, из которой, в частности, вытекало, что второй закон термодинамики может нарушаться. Этому нашлись и экспериментальные доказательства.

Отрывок из книги Олега Спиридонова "Людвиг Больцман. Жизнь гения физики и трагедия творца"

См. по теме: Больцмановский мозг - разум из вакуума

«Мы убиваем время, а время убивает нас»

Эмиль Кроткий

Научный подход на Google Play

Файлы

Деньги без процентов и инфляции

Политика у шимпанзе. Власть и секс у приматов

От диктатуры к демократии

Теория всего. Происхождение и судьба Вселенной