Ускоритель плазмы осилит дорогу до Марса за месяц
Огромный электроракетный двигатель с рекордными характеристиками прошёл наземный тест под нагрузкой, превышающей номинал. Новичок совмещает приличную тягу с экономичностью. А это позволяет надеяться на новый виток в развитии космической отрасли. Экзотический ускоритель плазмы способен распахнуть людям двери на другие планеты.
Американская компания Ad Astra Rocket успешно проверила в вакуумной камере свой оригинальный "Магнитоплазменный двигатель с переменным удельным импульсом" (Variable Specific Impulse Magnetoplasma Rocket — VASIMR), а точнее — его самую крупную модификацию VX-200.
Первые его испытания состоялись несколько месяцев назад, но 30 сентября 2009 года прошёл тест при рекордном уровне в 201 киловатт. "Это самый мощный плазменный двигатель в мире на данный момент", — утверждает основатель Ad Astra Rocket, бывший астронавт NASA, Франклин Чан-Диаз (Franklin Chang-Diaz).
Ближе всего по данному параметру к VX-200 находится один из вариантов двигателя Hall, который NASA разрабатывало своими силами. Но он был вчетверо слабее и употреблял из сети "всего" 50 киловатт. Остальные конструкции отстают ещё больше.
Основные части и принцип работы VASIMR: При помощи электромагнитного излучения рабочее тело (аргон) ионизируется. Далее газ попадает в "бустер", где вторая радиоволновая антенна резко увеличивает температуру плазмы. Набор же сверхпроводящих катушек используется как сопло с магнитными стенками, в котором плазма разгоняется до высокой скорости.
На максимальной же паспортной мощности в 200 кВт распределение энергопотребления двух "ступеней" плазменного ускорителя VX-200 остаётся аналогичным: 32 кВт уходит на ионизацию газа и 168 – на его нагрев и разгон. И хотя во время опыта пиковую свою мощность аппарат развивал доли секунды, создатели машины убеждены, что её рабочая версия сможет непрерывно работать минутами, а если потребуется – часами, днями и месяцами.
Плазменные ракетные двигатели (одним из вариантов которых и является VASIMR) наряду со своими близкими родственниками — ионными двигателями — сулят человечеству новые возможности в освоении космоса. От химических ракетных движков они выгодно отличаются колоссальной экономичностью.
Правда, увы, такие устройства дают малую тягу. В случае с VX-200 речь идёт о величине порядка 5 ньютонов (500 граммов). По меркам химических движков — это сущая мелочь, но по меркам электроракетных — очень солидная величина.
Для сравнения стоит вспомнить американский межпланетный аппарат Dawn, который стартовал осенью 2007-го (к своей первой цели, Весте, он прибудет в 2011 году). Для разгона к поясу астероидов Dawn использует три ионных двигателя, каждый из которых развивает максимальную тягу в 90 миллиньютонов.
"Это идентично весу одного листка из блокнота", — образно поясняет NASA. В чём, спрашивается, смысл? Дело в том, что "ионники" примерно в 10 раз эффективнее химических ракетных двигателей. В частности, удельный импульс устройств, стоящих на Dawn, составляет 3100 секунд.
Потому 425 килограммов рабочего тела (ксенона) им хватит на 2100 дней работы. Пусть ускорение Dawn невозможно заметить глазу, но общее приращение скорости за всё время миссии составит порядка 10 километров в секунду.
И сам аппарат получился сравнительно лёгким (тонна с четвертью). Потому для его старта с Земли понадобилась ракета меньшего класса (Delta II), а значит — более дешёвая, в сравнении той, что потребовалась бы для подъёма на орбиту гипотетического исследователя астероидов, построенного на основе химических движков.
Удельный импульс установки VX-200 составляет порядка 5000 секунд. Вообще же он может меняться, что и отражено в названии устройства. Больший КПД можно получить при малой тяге, меньший — при максимальной.
Так можно варьировать режим работы маршевого движка в зависимости от целей миссии космического аппарата. Где-то можно позволить себе потратить несколько больше рабочего тела, но сократить время полёта, где-то, напротив, выполнить задание за больший срок, но при минимальном расходе "горючего", а значит, — минимальном весе аппарата.
Тут надо отметить, что VASIMR претендует на роль некоего промежуточного варианта создания тяги в условиях космоса. Промежуточного между химическими ускорителями (мощными, но прожорливыми) и чрезвычайно миниатюрными электроракетными движками, экономичность которых может быть гораздо выше, чем даже у VX-200, но тяга будет составлять лишь доли грамма.
VASIMR обладает ещё одним преимуществом перед соперниками из стана электроракетных двигателей в целом: в нём плазма ни в одной точке не соприкасается с деталями аппарата, а контактирует только с полями.
Это означает, что устройство от Ad Astra сможет работать по многу месяцев и даже лет без деградации конструкции — то что надо для разгона космических аппаратов на пути в глубины Солнечной системы или коррекции орбиты спутников. У классических ионных ракетных двигателей больной вопрос – эрозия решёток-электродов. У VASIMR же таковых попросту нет.
Ad Astra Rocket строит богатые планы применения VASIMR в ряде проектов. Так, по соглашению с американским космическим агентством в 2013 году лётный вариант VX-200, названный VF-200-1, должен попасть на испытания на МКС. Разрабатываемый ныне аппарат будет базироваться на общем дизайне VX-200, но состоять из двух фактически параллельных движков по 100 киловатт каждый.
(Интересно, что Ad Astra Rocket ведёт переговоры о доставке VF-200-1 на станцию при помощи частного носителя от SpaceX либо Orbital Sciences).
VF-200-1 попробует поднимать орбиту станции, регулярно "проседающую" из-за слабого торможения в остатках атмосферы, имеющихся даже на 400-километровой высоте. VF-200-1 будет включаться на короткое время (несколько минут) эпизодически. А поскольку мощность, забираемая им из сети, очень велика, двигатель должен потреблять энергию, накопленную в специальных аккумуляторах, которые, в свою очередь, во время пауз в работе плазменного ускорителя будут понемногу подзаряжаться от солнечных батарей МКС.
Если тест пройдёт успешно, на такой способ подъёма орбиты, возможно, и переведут станцию. А это обещает солидную экономию. Ведь нынешний вариант подъёма орбиты (при помощи химических движков транспортных кораблей снабжения) означает расход 7,5 тонны горючего в год, в то время как VASIMR потребует на ту же цель 300 килограммов аргона ежегодно. Перспективы же технологии ещё заманчивее.
На основе одного или нескольких VF-200-1, полагает компания, можно построить беспилотный грузовик, который будет переправлять большие грузы с низкой околоземной орбиты на окололунную. Питание эти движки получали бы от солнечных батарей.
Выгода от замены химического орбитального буксира на магнитоплазменный в целом аналогична той, что была продемонстрирована в случае с установкой ионных двигателей на Dawn. То есть речь идёт о снижении массы комплексов, которые сначала нужно поднять на околоземную орбиту.
Так для переправки в одном рейсе 34 тонн полезного груза между земной и лунной орбитой химическим двигателям потребуется сжечь 60 тонн пары кислород/водород, а пятёрка VF-200-1 обойдётся 8 тоннами аргона. То, что лунный перелёт "на плазме" будет длиться месяцами, в случае беспилотной миссии не играет никакой роли.
А вот будущие двигатели VASIMR (несколько штук по 10-20 мегаватт) могли бы донести пилотируемый комплекс к Марсу всего за 39 дней, — утверждает Чан-Диаз. И тут многократное сокращение времени миссии — главная выгода. Ведь в таком случае астронавты получат намного меньшую дозу космической радиации, от которой иначе придётся защищаться толстыми стенками корабля (а это масса) либо магнитным щитом.
Для такого аппарата, скорее всего, потребовалась бы бортовая атомная электростанция — солнечные панели нужной мощности вышли бы просто чудовищно большими.
О том, что электроракетные движки для дальних миссий "просят" ядерную подпитку, специалисты говорят давно. Никаких принципиальных и неразрешимых трудностей в постройке подобного генератора сейчас нет.
Ещё не все вопросы относительно тонкостей работы самого VASIMR сняты. Учёным предстоит повысить полный КПД системы и найти лучший способ избавления от лишнего тепла, рассеиваемого таким движком. Но в целом технология вполне уже подходит к этапу, когда исключительно наземные экспериментальные установки должны породить модификации, предназначенные для отправки на орбиту. Чан-Диаз и его коллеги полагают, что коммерческие версии двигателей типа VASIMR могут появиться на рынке в 2014 году.
MEMBRANA.ru
2009.10.15 13:01:44