Новая технология биопечати – для более тонкой и здоровой ткани



3D-печать биологических тканей открывает огромные возможности для экспертизы лекарств и для восстановления поврежденных клеток, однако повторить сложное устройство человеческой ткани в лабораторных условиях весьма непросто. Новый метод биологической печати, разработанный исследователями Института биологическойинженерии Висса Университета Гарварда (США), позволяет создать тканевые структуры с небольшими кровеносными сосудами и множеством различных клеток, что является значительным успехом на пути к биопечати живой ткани.Новая технология биопечати – для более тонкой и здоровой ткани

3D-печать человеческих тканей была известна и раньше, однако исследователи могли создавать лишь относительно тонкие слои ткани. Попытки создать слой толщиной хотя бы в треть монеты в десять центов оканчивались неудачей, поскольку клеткам на внутренней стороне ткани не хватало кислорода и питательных веществ. Помимо этого, они не могли избавиться от отработанных веществ, и все это приводило к тому, что клетки задыхались и отмирали.

Для решения этой проблемы исследователи из Института Висса использовали специально созданные «биочернила» - такие чернила обладали определенными биологическими свойствами живой ткани. В первом типе биочернил использовалась внеклеточная матрица, которая соединяет клетки вместе и формирует ткань, в то время как второй тип представлял собой комбинацию такой матрицы и живых клеток.
Третий тип был создан таким образом, что он переходил в текучую стадию не при нагреве, а при остывании. Это означало, что после того, как команда исследователей использовала чернила для создания сети клеток, чернила могли быть охлаждены, расплавлены и высосаны из ткани, что приводило к созданию системы полых труб, в которые помещались кровеносные сосуды.

Такая структура соответствует устройству живой ткани, в которой жизнедеятельность внутренних клеток поддерживается системой маленьких, тонкостенных кровеносных сосудов, поставляющих кислород и питательные вещества и удаляющих отходы. Команда протестировала модель и с ее помощью смогла создать печатные ткани с различным устройством. В конце концов, исследователям даже удалось создать сложную структуру, состоящую из кровеносных сосудов и трех типов клеток. Предполагается, что такое устройство приближается к сложной структуре человеческой ткани.

«Клеточная инженерия нуждалась в подобной технологии, - говорит Дон Ингбер (Don Ingber), доктор медицины и доктор наук, директор-учредитель Института Висса. – Возможность создавать функциональную сеть сосудов при 3D-печати тканей перед ее имплантацией позволяет не только создавать более толстую ткань, но и хирургически соединяться созданную ткань с естественной сосудистой системой для немедленного осуществления перфузии имплантируемой ткани, что должно привести к значительному повышению ее приживаемости».

Первостепенную задачу для исследователей заключается в создании 3D-тканей, которые моделировали бы живую ткань настолько, что ткань можно было бы использовать для оценки эффективности и безопасности лекарств.
«Очевидные последующие применения нашего изобретения относятся именно к этой области», - заключает Дженнифер Льюис (Jennifer Lewis), член факультета здравоохранения Института Висса и старший автор исследования.

Источник

«В экспериментальных работах надо сомневаться до тех пор, пока факты не заставляют отказаться от всяких сомнений»

Луи Пастер

Файлы

Интеллектуальные уловки

Партизанская война

Аристотель "Политика. Этика. Поэтика"

Смерть в черной дыре и другие космические неприятности