Внутренний зоопарк
Изображение Карла Уорнера: Bodyscapes
Я впервые приобщился к миру науки в 1980 году еще студентом колледжа, решив подработать волонтером в Американском музее естественной истории в Нью-Йорке. Это была для меня замечательная возможность познакомиться с коллекциями, хранящимися в этом богатейшем музее, но, кроме того, этот опыт запомнился мне посещением проводившихся в музее весьма экстравагантных еженедельных семинаров. Каждую неделю на этих семинарах выступал какой-нибудь специалист, рассказывавший об одной из хорошо известных лишь узкому кругу специалистов областей естественной истории. После его выступления, которое часто не производило большого впечатления, слушатели разбирали его речь по кусочкам. Делалось это со всей беспощадностью. Временами все действо напоминало большой пикник, на котором приглашенный специалист выступал в роли окорока, зажаренного на вертеле. В ходе этих дебатов участники нередко переходили на крик, топали ногами, выражая возмущение, и демонстрировали богатство мимики и жестов, достойное классического немого фильма.
Вот где я очутился! И это происходило в священных залах храма науки, на семинаре, посвященном биологической систематике! Вы, возможно, знаете — это наука о том, какие названия давать живым организмам и как их классифицировать в соответствии со схемой, которую все мы учили в школе на уроках биологии. Сложно представить себе тему, которая имела бы меньшее отношение к повседневной жизни, и тем более сложно представить, как обсуждение этой темы может довести выдающихся ученых до буйства и даже потери достоинства. Глядя на это, сторонний наблюдатель имел бы все основания сказать им: "Идиоты! Займитесь делом!"
Ирония в том, что теперь я понимаю, почему эти люди так кипятились. В то время мне еще сложно было по достоинству оценить это, но они обсуждали одну из важнейших концепций всей биологической науки. На первый взгляд, в ней нет ничего особо важного, но эта концепция лежит в основе того, как мы сравниваем разные организмы — человека и рыбу, рыбу и червя или что угодно одно с чем угодно другим. Эта концепция позволила разработать методы, с помощью которых мы изучаем наши родственные связи, находим преступников по следам их ДНК, разбираемся в том, как возник вирус СПИДа, отслеживаем расселение вирусов гриппа по планете. Эта концепция, о которой я собираюсь сейчас рассказать, служит логическим основанием для значительной части того, о чем шла речь в этой книге. Если понять суть этой концепции, мы поймем, о чем нам говорят пресловутые рыбы, черви и бактерии, которых мы находим внутри себя.
Все поистине великие идеи о законах природы были сформулированы исходя из простейших первоначальных посылок, с которыми мы сталкиваемся каждый день. Базируясь на простых понятиях, такие идеи находят более широкое применение и объясняют уже по-настоящему значительные явления, такие как движение звезд или работа времени. В духе этих представлений я хотел бы поделиться с вами одним законом природы, с истинностью которого мы все можем согласиться. Этот закон настолько глубок, что многие из нас воспринимают его как нечто совершенно само собой разумеющееся. Но при этом он составляет отправную точку для всего, что мы делаем, занимаясь палеонтологией, биологией развития и генетикой.
Этот биологический "закон всего" состоит в том, что у каждого живого существа на нашей планете были биологические родители.
У каждого знакомого вам человека были родители. Были они и у каждой птицы, каждого тритона, каждой акулы, которых вам доводилось видеть. Новые технологии могут изменить положение дел с помощью клонирования или какого-нибудь другого метода, который еще предстоит изобрести, но пока этот закон природы повсеместно работает. Сформулируем его более четко: каждое живое существо развилось на основе родительской генетической информации. Эта информация определяет само понятие родителя, и, пользуясь этим определением, мы можем разобраться в биологическом механизме наследственности и применять это понятие даже к таким существам, как бактерии, которые размножаются совсем не так, как мы.
Сила этого закона именно в том, что он находит очень широкое применение. Вот она во всей своей красе: все мы суть модифицированные потомки наших родителей, или их генетической информации. Я потомок своего отца и своей матери, но я отличаюсь от них. Мои родители, в свою очередь, — модифицированные потомки своих родителей. И так далее. Схема происхождения их всех и тех модификаций, которые при этом происходили, определяет генеалогическое древо моей семьи. Причем определяет так однозначно, что восстановить это древо можно даже по небольшим образцам крови — моей и моих родственников.
Представьте себе, что вы стоите в комнате, заполненной людьми, с которыми вы никогда доселе не встречались. Вам дают простое задание: определить степень вашего родства с каждым из находящихся в этой комнате людей. Как вам разобраться, кто из них ваш дальний родственник, кто очень дальний, а кто ваш семидесятипятиюродный прапрадедушка?
Чтобы решить эту задачу, нам нужен некий биологический механизм, который можно было бы положить в основу наших изысканий и который позволял бы нам проверять гипотезы, касающиеся нашего генеалогического древа. Этот механизм можно вывести из уже знакомого нам закона биологии. Знание того, как именно работает наше происхождение, сопровождаемое модификацией, дает нам ключ к тайнам собственной биологической истории, потому что каждый этап такого происхождения оставляет в нас следы, которые мы можем выявить.
Давайте представим себе гипотетическую скучную супружескую пару, совершенно не похожую на клоунов, и их потомство. Один из их сыновей родился с генетической мутацией, которая дала ему красный резиновый нос, способный издавать громкий писк. Этот сын становится взрослым и осчастливливает некую женщину, сочетаясь с нею браком. Он передает этот мутантный нос своим сыновьям, и все они рождаются с пищащими резиновыми красными носами. Теперь представим себе, что один из его сыновей наследует новую мутацию, из-за которой у него развиваются огромные шлепающие ступни. В следующем поколении все его сыновья такие же, как он, — с красным пищащим носом и шлепающими ступнями. Перейдем дальше еще на одно поколение.
Родословное древо клоунов.
Представим себе, что один из детей этого поколения, правнук нашей скучной пары, получает в наследство еще одну мутацию — кудрявые ярко-рыжие волосы. Когда эта мутация переходит в следующее поколение, все его сыновья оказываются с кудрявыми рыжими волосами, шлепающими ступнями и пищащим красным носом. В итоге все эти праправнуки нашей бедной скучной пары оказались настоящими клоунами.
Этот несерьезный пример иллюстрирует одну в высшей степени серьезную идею. В результате происхождения, сопровождаемого модификацией, образуются генеалогические деревья, ветви которых мы можем определять по их признакам. Эти ветви обладают своими характерными чертами. Представители каждого поколения определенной ветви обладают уникальными признаками, по которым их можно разделить на группы разного ранга, входящие одна в другую как матрешки. Группа "настоящих клоунов", правнука и праправнуков первоначальной пары, вся происходит от того из их внуков, у которого был пищащий нос и шлепающие ступни. Этот внук относился к группе "протоклоунов" — потомков того сына первоначальной пары, у которого был только пищащий резиновый нос. Этот "предпротоклоун", в свою очередь, произошел от родителей, совершенно не похожих на клоунов.
Эта схема происхождения, сопровождаемого модификацией, означает, что вы могли бы представить гипотетическое родословное древо клоунов, даже если бы я ничего вам о нем не рассказал. Если бы перед вами была комната, заполненная представителями разных поколений клоунов, вы бы догадались, что все клоуны, у которых есть пищащий нос, составляют группу родственников. В составе этой группы будет подгруппа с пищащим носом и шлепающими ступнями, в составе этой подгруппы будет подгруппа более низкого ранга — настоящих клоунов с оранжевыми волосами, пищащим носом и шлепающими ступнями. Главное здесь то, что по наблюдаемым признакам — таким как оранжевые волосы, пищащий нос, большие шлепающие ступни — можно выделить все эти группы. Эти признаки дают нам возможность выделять группы клоунов, состоящие друг с другом в родстве, начиная с определенного поколения.
Если рассматривать вместо этой воображаемой клоунской семьи реальные организмы, обладающие реальными признаками, возникшими за счет мутаций, видоизменявших тела их предков, то и их родословное древо можно будет восстановить по наблюдаемым признакам. Если именно так и работает происхождение, сопровождаемое модификацией, то в основе каждой ветви наших деревьев должны находиться организмы, обладающие теми или иными базовыми признаками. Эта истина обладает такой огромной силой, что позволяет нам восстанавливать генеалогические деревья, даже основываясь на одних только генетических данных, в чем мы убеждаемся из результатов целого ряда генеалогических проектов, осуществляемых в настоящее время. Разумеется, реальный мир намного сложнее, чем этот простой гипотетический пример. Восстановление генеалогических деревьев нередко оказывается непростой задачей, например, если тот или иной признак неоднократно независимо возникал у разных представителей изучаемой родственной группы, или если взаимосвязь между признаком и геном, его определяющим, непрямая, или если наблюдаемые признаки определяются не генетическими изменениями, а изменениями рациона питания или каких-то условий окружающей среды. К счастью, восстановление схемы развития, сопровождаемого модификацией, нередко оказывается возможным, несмотря на все эти трудности, примерно также, как оказывается возможной очистка принимаемых радиосигналов от шума.
Но откуда растут все ветви этих деревьев, где их начало? Началась ли ветвь клоунов с той скучной пары? Ответ во многом зависит от того, как мы договоримся считать. Начинается ли моя ветвь с первых моих предков, носивших фамилию Шубин? Начинается ли она с украинских евреев или жителей Северной Италии? Как насчет древнейших людей? Или ее началом нужно считать микробов, живших 3,5 миллиарда лет назад или еще раньше? Все согласятся, что их родословная где-то начинается, но весь вопрос в том, где именно ее начало.
Если наша родословная началась с древнейших микробов и если это соответствует нашему закону биологии, то мы можем приводить в систему имеющиеся у нас данные и делать специфические предсказания. Жизнь на Земле оказывается не случайным набором из разных существ, она обретает систему, все элементы которой несут общие признаки происхождения, сопровождаемого модификацией, вроде тех, что мы видели в семье клоунов. Неслучайной должна быть и структура всей геологической летописи. Признаки, появившиеся позже, должны встречаться у ископаемых из менее древних слоев горных пород, чем признаки, возникшие ранее. Точно так же, как на моем собственном генеалогическом древе я появился позже, чем мой дедушка, на общем генеалогическом древе всего живого все его элементы тоже должны иметь свое место во времени.
Чтобы увидеть, как биологи на практике восстанавливают наши родственные связи с другими живыми существами, нам нужно покинуть наш воображаемый цирк и вернуться в зоопарк, который мы посетили в первой главе этой книги.
Еще одна прогулка по зоопарку — на сей раз подольше
Как мы с вами уже убедились, наши тела устроены далеко не случайно. Здесь я использую слово "случайно" в особом значении: я имею в виду, что строение нашего тела далеко не случайным образом соотносится со строением тел других животных, бегающих, летающих, ползающих и плавающих по нашей планете. Разные черты нашего строения объединяют нас с одними животными и отличают от других. Все то, что объединяет нас с остальными живыми существами, подчиняется определенному порядку. У нас два глаза, два уха, одна голова, пара рук и пара ног. У нас нет семи рук или двух голов. Нет у нас и колес.
Прогулка по зоопарку наглядно демонстрирует нашу связь со всей остальной жизнью. Более того, мы убеждаемся в том, что реальных живых существ можно распределить по группам так же, как мы распределили клоунов. Давайте пойдем и для начала посмотрим на трех разных животных, которых содержат в нашем зоопарке. Начнем с белых медведей. Из признаков, объединяющих нас с белыми медведями, можно составить длинный список: волосяной покров, молочные железы, четыре конечности, шея, два глаза, два уха — и многое другое. Перейдем теперь в отдел рептилий, к черепахам. Сходство с нами тоже налицо, но список общих черт получится короче. У черепах, как и у нас, есть четыре конечности, шея и два глаза (а также некоторые другие признаки). Но, в отличие от нас и от белых медведей, черепаха лишена волосяного покрова и молочных желез. Что касается ее панциря, то он, похоже, уникален для черепах, точно так же как белый мех уникален для белого медведя. Теперь зайдем в аквариум и посмотрим на экзотических рыб. У них тоже есть общие с нами признаки, но список этих признаков будет еще короче, чем список наших общих признаков с черепахами. Как и у нас, у рыб два глаза. Как и у нас, у них тоже есть конечности, но эти конечности представляют собой плавники, а не ноги и не руки. Мы не найдем у рыб и многих других признаков, объединяющих нас с белыми медведями, в частности волосяного покрова и молочных желез.
Все это начинает напоминать систему групп и подгрупп, входящих друг в друга как матрешки, с которыми мы только что имели дело на примере семейства клоунов. Рыб, черепах, белых медведей и людей объединяет ряд признаков: голова, два глаза, два уха и так далее. Черепах, белых медведей и нас объединяют не только эти признаки, но также наличие шеи и четырех конечностей, что рыбам не свойственно. Белые медведи и люди образуют более элитарную группу, представители которой обладают не только всеми этими признаками, но также шерстью и молочными железами.
Пример с клоунами дает нам способ, позволяющий во многом разобраться в ходе прогулки по зоопарку. У клоунов наблюдаемое распределение признаков отражало происхождение, сопровождаемое модификацией. Из этого следовало, что настоящие клоуны, обладающие всеми характерными признаками клоунов, происходили от менее далекого предка, чем все, у кого есть пищащий нос. Это вполне логично: первый клоун с пищащим носом приходится дедом отцу всех настоящих клоунов. Применяя тот же подход к группам животных, выделенным нами во время прогулки по зоопарку, мы приходим к выводу, что у людей и белых медведей должен быть не такой далекий общий предок, как у людей, белых медведей и черепах. Этот вывод подтверждается палеонтологическими данными: остатки древнейших млекопитающих известны из слоев намного более поздних, чем остатки древнейших рептилий.
Главная задача здесь состоит в том, чтобы узнать, как выглядело генеалогическое древо видов, то есть узнать, в какой степени разные виды родственны друг другу. Представления о степени родства разных организмов помогают нам толковать признаки ископаемых, таких как тиктаалик, в свете нашей прогулки по зоопарку. Тиктаалик — замечательная промежуточная форма между рыбами и их потомками, заселившими сушу, но вероятность того, что это наш непосредственный предок, очень невелика. Скорее всего, это родственник нашего предка. Ни один палеонтолог, находящийся в здравом уме, никогда станет утверждать, что им открыт чей-нибудь Предок. Подумайте, каковы шансы, что, гуляя по какому-нибудь случайно выбранному на нашей планете кладбищу, я обнаружу могилу своего предка? Они крохотны. Что я действительно могу обнаружить, так это то, что все люди, похороненные на любом кладбище — где бы оно ни находилось, в Китае, в Ботсване или в Италии, — в разной степени приходятся мне родственниками. Это можно узнать, исследуя их ДНК с помощью одной из многих продвинутых методик, применяемых сегодня в следственной экспертизе. Я могу убедиться в том, что одни из тех, кто покоится на этом кладбище, состоят со мной в далеком родстве, а другие приходятся мне довольно близкими родственниками. Построенное на основании таких данных родословное древо пролило бы немало света на мое прошлое, на историю моего рода. Эти данные можно было бы применить и на практике: их можно использовать, чтобы узнать, насколько я предрасположен заболеть той или иной болезнью, и разобраться в некоторых других биологических особенностях моего организма. То же самое можно сказать и о выяснении родственных связей между разными видами.
Сила родословного древа жизни прежде всего в том, что оно позволяет делать проверяемые предсказания. Важнее всего, что мы можем предсказывать, когда будут выявлены те или иные неизвестные ранее общие признаки разных групп организмов, они должны укладываться в построенную нами схему степеней родства. Таким образом, когда мы выявляем какие-то свойства клеток, ДНК и любых других структур, тканей и веществ, мы ожидаем, что степень их сходства у разных животных будет соответствовать тем группам, которые мы выделили, гуляя по зоопарку. Проверяя, действительно ли это так, мы проверяем нашу гипотетическую схему родства на ложность. Если будут обнаружены признаки, которые не соответствуют построенной нами схеме, значит, мы построили ее неправильно и она должна быть переделана. Например, если бы мы обнаружили множество признаков, общих для рыб и людей, но не свойственных белым медведям, это означало бы, что наша схема неправильна и должна быть заменена на другую. В тех случаях, когда имеющиеся данные могут быть интерпретированы неоднозначно, мы применяем ряд статистических методов, чтобы оценить надежность разных признаков и построить наиболее правдоподобный вариант дерева. Такие генеалогические построения рассматривают как рабочую гипотезу — до тех пор пока новые данные не позволят принять их или отказаться от них.
Некоторые из выделяемых нами групп животных так убедительно подтвердились в ходе неоднократных проверок, что мы относимся к ним как к фактам. Например, распределение по группам рыб, черепах, людей и белых медведей подтверждается особенностями тысяч генов, а также по сути и всеми чертами анатомии, физиологии и клеточной биологии этих организмов. Схема наших родственных отношений с этими животными подтверждена так убедительно, что мы уже не занимаемся поиском новых данных для ее проверки. Делать это так же бессмысленно, как пятьдесят раз бросать вниз один и тот же шарик, чтобы проверить, выполняется ли закон тяготения. Схема нашего родства с рыбами, черепахами и медведями уже не больше нуждается в проверке, чем этот закон. Вероятность того, что на пятьдесят первый раз шарик полетит не вниз, а вверх, не больше, чем вероятность того, что будут обнаружены новые данные, которые опровергнут схему наших связей с этими животными.
Теперь мы можем вернуться к цели, поставленной в начале этой книги. Как безошибочно восстановить отношения животных, которые давно вымерли, с телами и генами современных животных? Для этого мы ищем проявления происхождения, сопровождаемого модификацией, суммируем признаки, определяем, насколько качественны наши данные, и оцениваем, насколько хорошо выделенные нами группы представлены в палеонтологической летописи. Потрясающе то, что сегодня мы располагаем инструментами, которые позволяют проверять предполагаемую нами иерархическую структуру всего живого с помощью информационных технологий и при участии больших лабораторий, читающих последовательности нуклеотидов в ДНК. Эти инструменты помогают анализировать связи живых организмов по тому же принципу, который мы применяли в зоопарке, но на уровне намного более высоком. Кроме того, в последнее время мы получили доступ ко множеству новых местонахождений ископаемых, разбросанных по планете. Место наших тел в мире природы открывается нам яснее, чем когда-либо прежде.
Пройдя главы с первой по десятую, мы убедились, что современных живых существ объединяют с давно вымершими многие черты глубокого сходства. Это относится и к червям, и к губкам, и к рыбам, и к людям. Теперь, вооружившись знаниями о происхождении, сопровождаемом модификацией, мы можем понять значение всего этого. Хватит развлечений в цирке и зоопарке — время перейти к делу.
Как мы убедились, внутри наших тел можно найти связи с целым зверинцем. Одни структуры нашего тела напоминают структуры медуз, другие — червей, третьи — рыб. Это сходство отнюдь не бессистемно. Некоторые черты нашего строения свойственны также всем остальным животным, некоторые — уникальны для нас. Видеть порядок, которому подчиняются все эти черты, прекрасно и удивительно. Тысячи генов, бессчетные особенности строения и развития — и все это следует той же логике, какой следовали клоуны в приведенном нами воображаемом примере.
Давайте рассмотрим некоторые из признаков, о которых мы уже говорили в этой книге, и разберемся, какому порядку они подчиняются.
Со всеми животными, населяющими нашу планету, нас объединяют многоклеточные тела. Назовем эту группу многоклеточной жизнью. Признак многоклеточности объединяет нас со всеми организмами от губок, трихоплаксов и медуз до шимпанзе.
Подгруппа в составе группы многоклеточных объединяет животных, обладающих планом строения тела, похожим на наш, который включает перед и зад, верх и низ, правый и левый бок. Систематики называют эту группу Bilateria (то есть "двусторонне-симметричные"). Сюда относятся многие животные от червей и насекомых до людей.
Подгруппа следующего ранга, в составе подгруппы двусторонне-симметричных многоклеточных животных, объединяет организмы, обладающие черепом и позвоночником. Их называют позвоночными животными.
Следующая подгруппа объединяет многоклеточных животных, двусторонне-симметричных, обладающих черепом и позвоночником, у которых к тому же есть две пары конечностей. Этих животных называют тетраподами (то есть "четвероногими") или наземными позвоночными.
Подгруппа еще более низкого ранга объединяет многоклеточных животных, двусторонне-симметричных, с черепом и позвоночником и двумя парами конечностей, у которых к тому же среднее ухо состоит из трех косточек. Этих наземных позвоночных называют млекопитающими.
И наконец, следующая подгруппа объединяет многоклеточных животных, двусторонне-симметричных, с черепом и позвоночником, двумя парами конечностей и тремя косточками среднего уха, которые к тому же ходят на двух ногах и обладают огромным мозгом. Этих млекопитающих называют людьми.
Родословное древо людей, начиная от медузоподобных организмов. Оно устроено точно так же, как родословное древо клоунов.
Сила этого разделения на группы — в том множестве данных, которые лежат в его основе. Эту схему подтверждают сотни и тысячи генетических, эмбриологических и анатомических признаков. И это разделение позволяет нам по-новому взглянуть на самих себя и на наше внутреннее строение.
Рассматривая эти группы в обратном порядке, мы как бы очищаем луковицу, снимая слой за слоем и обнажая более древние слои нашей истории. На поверхности лежат признаки, объединяющие нас с остальными млекопитающими. Затем, если посмотреть глубже, мы видим черты, которые объединяют нас со всеми наземными позвоночными. Еще глубже лежат наши общие черты с рыбами. Еще глубже — признаки, которые объединяют нас с червями. И так далее. Исходя из той же логики, которую мы применяли к клоунам, мы открываем для себя схему происхождения, сопровождаемого модификацией, которая выгравирована внутри наших тел. Эта схема отражена и в геологической летописи. Древнейшим многоклеточным ископаемым более 600 миллионов лет, древнейшим ископаемым четвероногим — меньше 400 миллионов лет, а древнейшим млекопитающим — меньше 200 миллионов лет. Древнейшему ископаемому, ходившему на двух ногах, около 4 миллионов лет. Что это — случайное совпадение или отражение закона биологии, работу которого мы наблюдаем повсюду изо дня в день?
Карл Саган однажды сказал, что смотреть на звезды — все равно что смотреть в прошлое. Достигающий наших глаз свет многих звезд начал свой путь миллионы и миллиарды лет назад, задолго до того, как возник мир, который мы знаем. Мне нравится думать о том, что смотреть на людей — во многом все равно что смотреть на звезды. Если знать, как смотреть, то наши тела оказываются капсулами с посланиями из прошлого, и, открывая эти капсулы, мы узнаем о важнейших этапах истории нашей планеты и о живых существах, населявших в далеком прошлом ее океаны, реки и леса. Изменения, произошедшие в древней атмосфере, дали клеткам возможность сообща строить многоклеточные тела. Условия древних рек во многом определили строение наших конечностей. Наши цветовое зрение и обоняние оформились под влиянием жизни в древних лесах и на древних равнинах. И этот список можно продолжать и продолжать. Эта история — наше наследие. Оно влияет на нашу жизнь сегодня и будет влиять на нее в будущем.
Как история нас достает
Однажды моя коленка раздулась до размеров грейпфрута, и одному из моих коллег из отделения хирургии пришлось долго мять и сгибать ее, чтобы понять, растяжение ли это, или разрыв одной из связок, или повреждение хрящевых прокладок внутри сустава. Этот осмотр и последовавшая за ним магнитно-резонансная томография выявили разрыв мениска — возможно, следствие двадцати пяти лет блужданий с рюкзаком по скалам и каменным осыпям. Повреждая коленный сустав, мы обычно повреждаем одну или несколько из трех его структур: внутренний мениск, внутреннюю боковую связку или переднюю крестообразную связку. Повреждения этих трех структур коленного сустава случаются так часто, что врачи между собой называют эти структуры "несчастной триадой". Это яркое свидетельство того, что носить в себе рыбу не всегда приятно.
За то, что мы стали людьми, приходится расплачиваться. Мы платим определенную цену за обладание своим исключительным набором признаков — способностью говорить, думать, работать руками и ходить на двух ногах. Это неизбежное следствие заключенного внутри нас древа жизни.
Представьте себе, что кто-нибудь постарался бы переделать "фольксваген-жук" так, чтобы он мог развивать скорость 250 километров в час. В 1933 году Адольф Гитлер поручил конструктору Фердинанду Порше разработать автомобиль, который был бы недорогим, развивал скорость до 100 километров в час и мог служить надежным средством транспорта для средней немецкой семьи. В результате появился легендарный "фольксваген-жук". Эта история и условия, поставленные Гитлером, накладывают определенные ограничения на возможности модификации этого автомобиля. Сегодня его конструкция допускает переналадку лишь до определенных пределов, после которых начнутся серьезные проблемы.
Во многом люди похожи на рыб, прошедших тюнинг — как "фольксваген-жук" для участия в гонках. Возьмем план строения рыбы, переоборудуем его, чтобы получить млекопитающее, а затем постепенно модифицируем это млекопитающее так, чтобы оно могло ходить на двух ногах, говорить, думать и управлять тончайшими движениями своих пальцев, — и мы неизбежно столкнемся с рядом проблем. Переделывать рыбу, ничего не платя за это, можно лишь до определенных пределов. В мире, который был бы продуктом идеального замысла, а не долгой и непростой истории, нам не пришлось бы страдать от множества разных болезней, начиная с геморроя и заканчивая раком.
Нигде наша история не проявляется так отчетливо, как в изгибах, извивах и поворотах наших артерий, вен и нервов. Если проследить путь некоторых нервов, мы увидим, что они странным образом петляют вокруг определенных органов, следуя поначалу в одном направлении лишь затем, чтобы потом причудливо изогнуться и привести в совсем неожиданное место. Эти изгибы и извивы представляют собой поразительные порождения нашего прошлого, которые, как нам предстоит убедиться, нередко создают нам проблемы, например такие, как икота или грыжа. И это лишь два из многих примеров того, как прошлое дает о себе знать, сказываясь на нашем здоровье.
В разные времена наши предки жили в древних океанах, в мелководных реках и в саваннах, но не в офисных зданиях, не на горнолыжных курортах и не на теннисных кортах. Мы не приспособлены для того, чтобы жить больше 80 лет, сидеть на ягодицах по десять часов в день и есть пирожные. Не приспособлены мы и для того, чтобы играть в футбол. Эти противоречия между нашим прошлым и нашим человеческим настоящим означают, что наши тела обречены нередко ломаться определенным предсказуемым образом.
У всех болезней, от которых мы страдаем, есть некоторая историческая составляющая. Примеры, которые мы сейчас разберем, покажут нам, как разные ветви заключенного в нас древа жизни, от микробов до рыб, амфибий и, наконец, древних людей, достают до нас из прошлого и сказываются на нашем здоровье. Каждый из этих примеров показывает, что мы не были устроены согласно некому рациональному замыслу, но возникли в ходе долгой и непростой истории.
Наследие охотников и собирателей: ожирение, сердечные заболевания и геморрой
Наши далекие предки-рыбы активно охотились в древних океанах и реках. Предки чуть менее дальние, амфибии, рептилии и млекопитающие, тоже были активными хищниками и добывали разную добычу, от насекомых до рептилий. Предки, которые стоят к нам еще ближе, приматы, активно передвигались по деревьям и питались плодами и листьями. Древнейшие люди, в свою очередь, были активными охотниками и собирателями, которые впоследствии занялись сельским хозяйством. Замечаете общую тему? Красной нитью через весь этот ряд проходит слово "активный".
К несчастью, большинство из нас проводит значительную часть дня в занятиях каких угодно, только не активных. В настоящую минуту я просиживаю зад, набивая на компьютере текст этой книги, а многие из вас делают то же самое, читая ее (за исключением тех немногих праведных, кто делает это во время упражнений в тренажерном зале). Весь ход нашей истории от рыб до древних людей никоим образом не подготовил нас к такому образу жизни. Это несоответствие нашего прошлого нашему настоящему проявляется во многих недугах, свойственных современной жизни.
От чего люди чаще всего умирают? Четыре из первых десяти причин — сердечные заболевания, диабет, ожирение и инсульты — имеют и генетическую, и, по всей видимости, историческую основу. Почти несомненно, что эти проблемы во многом порождены тем, что наши тела приспособлены для жизни активного животного, а мы ведем образ жизни овощей.
В 1962 году антрополог Джеймс Нил рассмотрел эту проблему с точки зрения питания. Он сформулировал концепцию, известную как гипотеза "экономного генотипа". Эта концепция предполагает, что наши предки, древние люди, были приспособлены к жизни в условиях чередующихся бумов и спадов. Будучи охотниками и собирателями, они испытывали периоды временного изобилия, когда добыча была многочисленна и охота успешна, сменявшиеся периодами нехватки, когда еды удавалось добыть намного меньше.
Нил предположил, что этот цикл пиров и голодовок отразился на наших генах и на наших болезнях. Его основная идея состояла в том, что тела наших предков позволяли им накапливать ресурсы во времена изобилия, чтобы впоследствии использовать их в голодные времена. В связи с этим очень полезной оказалась способность накапливать жир. Наш организм распределяет энергию потребляемой пищи таким образом, что часть ее уходит на поддержание активности в настоящее время, а часть запасается, например в виде жира, для использования в будущем. Этот механизм успешно работает в мире бумов и спадов, но дает прискорбные сбои в условиях, когда высококалорийная пища доступна круглые сутки и круглый год. Ожирение и связанные с ним болезни — развивающийся с возрастом диабет, повышенное кровяное давление и многие сердечные заболевания — становятся обычным явлением. Гипотеза экономного генотипа правдоподобно объясняет также наше увлечение жирной пищей. Жирная пища особенно калорийна, то есть богата энергией, и врожденная склонность к такой пище могла давать нашим предкам преимущество перед теми собратьями, кто ею не увлекался.
Сидячий образ жизни тоже сказывается на нашем здоровье, потому что наша кровеносная система сформировалась у намного более активных существ, чем те, которыми мы являемся сегодня.
Наше сердце, как насос, прокачивает по телу кровь, которая доходит до наших органов по артериям и возвращается в сердце по венам. Артерии находятся ближе к сердцу, поэтому давление в них намного выше, чем в венах. Это обстоятельство может затруднять возвращение крови от ступней к сердцу. Кровь, которая поступает туда, должна возвращаться назад, так сказать, в гору, по венам наших ног и вплоть до грудной клетки, где находится сердце. Если давление в венах слишком низкое, у крови может не получиться пройти весь этот путь. В связи с этим у наших предков развились два признака, помогающих крови подниматься вверх. Во-первых, это небольшие клапаны внутри вен, которые пропускают кровь вверх, но преграждают ей дорогу обратно вниз. Во-вторых, это работа мышц наших ног. Когда мы ходим, бегаем или прыгаем, эти мышцы сокращаются, и их сокращение помогает крови подниматься вверх по венам. Клапаны, пропускающие кровь лишь в одну сторону, и ножные мышцы, работающие как насос, позволяют крови успешно достигать грудной клетки, поднимаясь из ступней.
Эта система превосходно работает у активных существ, которым ноги постоянно служат, чтобы ходить, бегать и прыгать. Но у тех, кто ведет сидячий образ жизни, она работает плохо. Если человек мало пользуется ногами, их мышцы не прокачивают кровь вверх по венам. В итоге кровь застаивается в венах, и ее постоянное давление на клапаны может нарушать их работу. Именно это происходит при варикозном расширении вен. Нарушения работы клапанов еще больше способствуют скапливанию крови в венах. Их стенки растягиваются, и вены раздуваются, образуя под кожей ног выступающую извилистую сеть.
Не меньшие проблемы происходят от сбоев этой системы в районе прямой кишки. Водители-дальнобойщики и люди других специальностей, проводящие долгое время в сидячем положении, особенно подвержены геморрою — еще одной форме нашей расплаты за сидячий образ жизни. Во время продолжительного сидения кровь застаивается в венах, окружающих прямую кишку. Застой крови вызывает расширение, разрастание и воспаление этих вен — неприятное напоминание о том, что мы не приспособлены к продолжительному сидению, особенно на жестких поверхностях.
Наследие приматов: речь достается недешево
Способность разговаривать досталась нам дорогой ценой. За эту способность мы расплачиваемся риском умереть от остановки дыхания во время сна или подавившись какой-нибудь пищей.
Мы издаем звуки, складывающиеся в речь, посредством управляемых движений языка, гортани и задних стенок горла. Все эти структуры возникли в результате несложных модификаций структур, свойственных другим млекопитающим, а также рептилиям. В пятой главе мы уже говорили о том, что человеческая гортань формируется на основе хрящей бывших жаберных дуг. Задние стенки горла, идущие от последних коренных зубов до участка непосредственно над гортанью, у нас мягкие и подвижные и могут смыкаться и размыкаться. Мы издаем звуки речи, двигая языком, меняя форму и положение губ и сокращая ряд мышц, управляющих жесткостью стенки горла.
Синдром ночного апноэ — внезапной остановки дыхания во сне — опасный побочный эффект, иногда вызываемый способностью говорить. Во время сна мышцы человеческого горла расслабляются. У большинства людей их расслабление не вызывает никаких проблем, но у некоторых оно может приводить к тому, что доступ воздуха в легкие оказывается перекрыт и человек в течение довольно долгого времени не дышит. Этот синдром, разумеется, очень опасен, особенно для людей, страдающих сердечными заболеваниями. Гибкость нашего горла, которая позволяет нам говорить, в то же время подвергает нас риску одной из форм остановки дыхания, вызываемого перекрыванием дыхательных путей во время сна.
Еще одно неприятное последствие устройства нашего речевого аппарата — повышенный риск подавиться и умереть от удушья. Наш рот ведет и в трахею, через которую мы дышим, и в пищевод, куда поступает наша пища. Таким образом, мы дышим, едим и разговариваем через одно и то же отверстие. Между этими функциями иногда возникают противоречия, например, когда в трахее застревает косточка или кусок пищи.
Наследие рыб и головастиков: икота
Икота — неприятность, восходящая корнями к истории, роднящей нас с рыбами и головастиками.
Если что-то и может нас в связи с этим утешить, так это то, что наше несчастье разделяют с нами и многие другие млекопитающие. У кошек можно искусственно вызвать икоту, стимулируя электродами небольшой участок ткани в стволовой части мозга. По-видимому, в этой части мозга и находится центр, управляющий сложной рефлекторной реакцией, которую мы называем икотой.
Рефлекс икоты представляет собой стереотипные повторяющиеся сокращения ряда мышц, относящихся к стенке нашего тела, диафрагме, шее и горлу. Спазм одного или двух главных нервов, управляющих дыханием, заставляет эти мышцы сокращаться. В результате происходит очень резкий вдох. Затем, около 35 миллисекунд спустя, в глубине нашей гортани смыкается голосовая щель, перекрывая верхнюю часть дыхательных путей. Быстрый вдох с последующим перекрыванием дыхания вызывает звук, похожий на "ик".
Беда в том, что нам редко удается икнуть лишь единожды. Если икоту получается остановить, икнув раз пять или десять, у нас есть хорошие шансы, что она не возобновится. Но если пропустить этот момент, то икота продолжится и повторится в среднем еще шестьдесят раз. Некоторым из нас довольно быстро избавиться от икоты помогает вдыхание углекислого газа (классический способ — дышать, засунув лицо в бумажный пакет) или распрямление стенки тела (за счет глубокого вдоха и задержки дыхания). Но многим и это не помогает. Иногда патологические приступы икоты могут быть необычайно долгими. Самый долгий известный приступ икоты у человека продолжался непрерывно с 1922 по 1990 год.
Склонность к икоте — еще один способ нашего далекого прошлого напомнить о себе. Здесь стоит обсудить два момента. Первый — причина того нервного спазма, который вызывает икоту. Второй — механизм управления икотой, резким вдохом и быстрым перекрыванием голосовой щели. Нервный спазм — наследие наших предков-рыб, а сама реакция икоты возникла у наших предков-амфибий, личинки которых были похожи на нынешних головастиков.
Начнем с рыб. Наш мозг позволяет контролировать дыхание без малейших сознательных усилий с нашей стороны. Большая часть работы выполняется в стволовой части мозга, на границе между головным и спинным мозгом. Мозговой ствол посылает нервные импульсы главным дыхательным мышцам. Дыхание всегда происходит ритмично, по одной и той же схеме. Мышцы груди, диафрагма и гортань сокращаются в строго определенном порядке. Управляющая этими сокращениями часть мозгового ствола получила название "центральный генератор ритма". Этот участок мозга вызывает ритмичные нервные импульсы и, посредством этих импульсов, ритмичное сокращение мышц. Ряд других похожих генераторов, расположенных у нас в головном и спинном мозге, управляет другими ритмичными формами активности, такими как глотание или ходьба.
Беда в том, что первоначально ствол нашего мозга управлял дыханием у рыб и лишь впоследствии был переоборудован, чтобы управлять дыханием наземных позвоночных. И у хрящевых, и у костных рыб определенный участок мозгового ствола обеспечивает ритмичное сокращение мышц глотки и жабр. Нервы, вызывающие сокращения этих мышц, все идут из строго определенного участка мозгового ствола. Схема расположения этих нервов, свойственная современным рыбам, наблюдается уже у представителей одной из древнейших ископаемых групп позвоночных. Среди ископаемых остатков остракодерм в породах возрастом более 400 миллионов лет имеются отпечатки мозга и черепно-мозговых нервов. Как и у современных рыб, нервы, управляющие дыханием, выходят у остракодерм из мозгового ствола.
У рыб эта система работает прекрасно, но у млекопитающих дает сбои. Дело в том, что у рыб нервам, которые управляют дыханием, не приходится идти далеко после выхода из мозгового ствола. Жабры и глотка располагаются у них как раз по соседству с этим отделом мозга. У нас, млекопитающих, дела обстоят иначе. Нашим дыханием управляют мышцы стенки грудной клетки и диафрагма — мышечная перегородка, отделяющая грудную полость от брюшной. Сокращения этих мышц и вызывают дыхательные движения. Нервы, управляющие сокращением диафрагмы, выходят из нашего мозгового ствола ровно там же, где выходят нервы, управляющие дыханием у рыб, — в районе шеи. Эти нервы, блуждающий и диафрагмальный, проходят от основания черепа через шею и грудную клетку, достигая диафрагмы и грудных мышц, управляющих дыханием. Этот извилистый путь вызывает проблемы. Если бы наше тело было построено по рациональному замыслу, эти нервы выходили бы не в области шеи, а где-нибудь поблизости от диафрагмы. А так, к прискорбию, любые препятствия, с которыми встречаются эти нервы на своем долгом пути, могут затруднять их работу и вызывать спазмы.
Если странная конфигурация наших нервов досталась нам в наследство от предков-рыб, то сама реакция икоты, по-видимому, восходит к нашим менее далеким предкам — амфибиям. Икота представляет собой особую форму дыхательных движений — за резким вдохом следует быстрое перекрывание голосовой щели. Икотой, судя по всему, тоже управляет центральный генератор ритма в мозговом стволе. Стимулируя его электрическими импульсами, можно искусственно вызвать икоту. Вполне логично, что икотой тоже управляет центральный генератор ритма, ведь эта реакция, как и нормальные дыхательные движения, включает повторяющиеся в определенной последовательности серии сокращений мышц.
Оказывается, наш генератор ритма, ответственный за икоту, ничем по сути не отличается от соответствующего генератора, имеющегося у амфибий. И не только у взрослых амфибий, но и у их личинок — головастиков, которые используют для дыхания как легкие, так и жабры. У головастиков этот генератор включается тогда, когда они дышат жабрами. В этом случае им необходимо закачивать воду в глотку и прокачивать ее сквозь жаберные щели наружу, но вода при этом не должна попадать в легкие. Чтобы не допустить проникновения в легкие воды, дыхательные пути перекрываются — за счет того, что сжимается ведущая в легкие щель. Вовремя закрывать эту щель сразу после начала вдоха позволяют нервные импульсы, посылаемые центральным генератором ритма в мозговом стволе. Реакция, аналогичная нашей икоте, позволяет головастикам успешно дышать жабрами.
Сходство между нашей икотой и жаберным дыханием головастиков столь велико, что многие исследователи полагают, что оба эти явления суть варианты одной и той же реакции. Жаберное дыхание у головастиков тоже можно блокировать углекислым газом, как и нашу икоту. Блокировку жаберного дыхания можно вызвать и растяжением стенки тела, подобно тому, как мы останавливаем икоту глубоким вдохом с последующей задержкой дыхания. Может быть, мы бы остановили жаберное дыхание у головастика и в том случае, если бы смогли заставить его выпить воду с дальнего края стакана, низко наклонив голову.
Отрывок из книги Нила Шубина "Внутренняя рыба. История человеческого тела с древнейших времен до наших дней"
1841
2014.07.23 13:01:40