Травмы мозга и их влияние на чувства

Травмы мозга и их влияние на чувства

Наш организм имеет щит – просто чтобы отгородиться от вредного воздействия окружающей среды. И иногда эти защитные средства и механизмы преграждают путь многим сигналам из внешнего мира, которые не проникают в тело и, следовательно, не поступают в мозг. Однако в ходе эволюционного процесса появились разнообразные способы, помогающие лучшему восприятию информации извне и точной передаче ее в мозг. Например, кожа обеспечивает защиту от пыли, грязи, микробов и других факторов окружающей среды, которые могли бы причинить нам вред, и она же первая реагирует на любое физическое взаимодействие нашего тела с внешним миром, такое как давление воздуха или удар обо что-то. Уши собирают и фильтруют звуковые волны, воздействию которых мы подвержены постоянно. Глаза получают, сортируют и передают информацию, которую несут световые волны.
 
Таким образом, процесс восприятия мира начинается примерно в одном и том же месте – в клетках, которые первыми реагируют на внешние раздражители. Некоторые чувства, такие как обоняние и вкус, действуют довольно просто и единообразно. Здесь задействован только один механизм первой реакции – механизм замка и ключа. Разнообразие всего того, что мы можем попробовать и понюхать, эти органы чувств воспринимают как вариации на тему. Зрение похоже на восприятие запаха и вкуса тем, что первый отклик приходит от клеточного компонента (белка, который семь раз пронизывает мембрану), очень напоминающего те, которые используются при первой реакции в ответ на запахи и вкусы. Отличие же реакции зрения заключается в том, что механизм замка и ключа не используется. Вместо этого свет попадает на клетку и выталкивает ассоциированную молекулу (ретиналь) из встроенного в клетку сетчатки рецептора опсина, и это запускает дальнейшие биохимические реакции в палочках и колбочках сетчатки. Тактильное чувство уникально, и оно задействует несколько видов клеток при первой реакции, но опять же, как только они активируются, все происходящее в этих клетках становится просто вариацией на тему, запускающей потенциал действия для мозга. Равновесие и слух также тесно связаны с тем, как клетки в этих системах действуют в первый момент. И в том и в другом случае решающее значение для первой реакции имеет изгиб маленьких ресничек, или волосков. Даже ноцицепция (боль) и температура воздействуют на первую чувствительную клетку, конечная задача которой заключается в передаче сигнала (потенциала действия) в нервную систему.
 
Как только потенциал действия инициируется и передается из клетки, нервная система реагирует практически одинаково для всех этих чувств. Основная задача периферической нервной системы – передача электрического потенциала действия в мозг. Каждый орган чувств имеет свои нервные пути, и поэтому сигналы поступают в самые разные части мозга. Процесс, происходящий в мозге, довольно сложен, и важно понимать, что чувства не просто проецируются на мозг потенциалом действия. На самом деле сигнал от одного источника запаха достигает нескольких областей мозга, и восприятие любого одоранта представляет собой комбинацию потенциала действия, идущего к различным частям мозга, где это восприятие и формируется при помощи мыслительных процессов. Чтобы поведать историю наших чувств, я использовал чувства животных и странные человеческие ощущения.
 
Есть еще один способ, который ученые применяют при исследовании работы мозга и его влияния на чувства. То, насколько разумен и пластичен наш мозг при восприятии информации от органов чувств, видно на примере людей с некоторыми черепно-мозговыми травмами: достаточно понаблюдать за их поведением после подобных травм или операций на мозге. У этого подхода даже есть название – клинико-анатомический корреляционный метод. Я уже упоминал эксперименты Уайлдера Пенфилда, проводившего операции на открытом мозге. На примерах, приведенных здесь, вы увидите, как смесь информации и скопление отдельных ощущений становятся восприятием.
 
Никто не знает, где и когда произойдет несчастный случай. Бригадир по строительству железных дорог Финеас Гейдж, проснувшись однажды сентябрьским утром 1848 года в Вермонте, и помыслить не мог, что в тот же день в результате взрыва динамита трамбовочный стержень длиной метр двадцать пробьет его череп и выйдет наружу с другой стороны. О том, как этот инцидент отразился на личности Гейджа, ходят легенды, и эта история уже обросла мифами. Когда Финеас умер, его череп сохранили и передали в медицинскую библиотеку Фрэнсиса Каунтвея в Гарварде. Череп Гейджа дает современным нейробиологам возможность проанализировать связи в мозге, которые были порваны ломом, и таким образом лучше понять воздействие травмы на те участки мозга, которые могли быть повреждены.
 
Да и Франц Брёндл, известный науке как Мистер Б., проснувшись майским утром 1926 года в Германии, понятия не имел, что в тот день с лихвой наглотается угарного газа, вырвавшегося из плавильного аппарата, рядом с которым он работал. Следующие несколько месяцев своей жизни он провел в больницах: из-за недостатка кислорода в мозге у него появились очень странные симптомы. Мистер Б. стал знаменитостью в среде психологов, потому что в результате того несчастного случая у него практически перестала работать кратковременная память.
 
А выдающийся британский музыкант и музыковед Клайв Уэринг, еще один печальный случай в психологии, проснулся мартовским днем 1986 года в довольно вялом состоянии. Он понятия не имел, что во всем виноват простой вирус герпеса: тот не только проник в его организм, но и поразил центральную нервную систему, разрушив некоторые нервные ткани. В итоге мозг Клайва потерял способность переносить события из кратковременной памяти в долговременную: он помнит все не дольше 7–30 секунд – примерно каждые 20 секунд он «просыпается» и «перезапускает» свое сознание.
 
И Генри Молисон (также известный как пациент Г. М.), который отправился сентябрьским днем 1953 года в больницу Хартфорда в Коннектикуте, чтобы при помощи операции избавиться от эпилепсии, не подозревал, что проснется без кратковременной памяти. Его нейрохирург, Уильям Сковилл Бичи, провел двустороннюю резекцию медиальной височной доли – операцию прямого соединения левой и правой сторон мозга, нацеленную на предотвращение эпилептических припадков.
 
За те двести лет, что строение мозга вызывает у человечества интерес, были изучены и описаны сотни случаев, подобных тем, что представлены на Рис. 1. По счастливому стечению обстоятельств за последние два столетия багаж знаний нейробиологии в области функционирования мозга значительно пополнился. Французские врачи и ученые начала XIX века были одними из самых квалифицированных анатомов своего времени. Их исследования в конце 1800-х годов внесли большой вклад в науку, известную сейчас как нейроанатомия. Кроме того, французы изучали мозг пациентов со случайными (или иногда умышленными) травмами.

На научном собрании в Париже в 1861 году парижский врач Эрнест Обертен представил доклад о неудачной попытке самоубийства. Обертен был не только врачом, он интересовался работой мозга, в частности связью мозга с языком.
 
Выстрелившего себе в голову месье Каллерье срочно доставили в больницу, где работал Обертен. Ранение было ужасным: пострадала часть черепа Каллерье, и Обертену пришлось ее удалить, в результате чего мозг обнажился. По-видимому, пока врач прилагал усилия по спасению жизни месье, тот был в сознании, потому что сохранял способность разговаривать. Затем Обертен сделал то, что век спустя сделал бы Уайлдер Пенфилд: он поместил хирургический шпатель на область мозга, которая, по его мнению, отвечала за язык и речь, и, надавливая на этот участок, попросил Каллерье говорить. В своем выступлении в Париже Обертен сказал, что речь пациента состояла тогда из «слова, которое начинало раздваиваться». Когда врач ослаблял давление, способность говорить слова нормально возвращалась к Каллерье. Обертен манипулировал частью мозга, которая имела какое-то отношение к речи. К сожалению, Каллерье не пережил событий того дня.
 
Единственная известная фотография Леборна – это фотография его консервированного мозга в банке
 
Рис. 1. Финеас Гейдж, Луи Виктор Леборн, Генри Молисон и Клайв Уэринг, срезы мозга Гейджа, Леборна и Молисона, полученные в исследовании 2015 года, проведенном де Шоттеном и его коллегами. Единственная известная фотография Леборна – это фотография его консервированного мозга в банке. В соответствии с данными де Шоттена и др. (2015)
 
 
Несколько дней спустя Поль Брока – другой французский врач, присутствовавший на том научном собрании, – посетил своего пациента по имени Луи Виктор Леборн, известного также как Тан (пытаясь говорить, он снова и снова повторял это слово). Леборн провел в больнице большую часть взрослой жизни из-за разных болезней, одна из которых привела к афазии – потере речи. Месье Тан попал под наблюдение Брока из-за гангрены ноги. Увы, врач уже ничего не мог сделать для него, и бедный Леборн умер от инфекции. Памятуя о докладе Обертена, Брока заинтересовался, почему Леборн потерял способность говорить, и при вскрытии разрезал мозг своего несчастного покойного пациента. Брока обнаружил, что мозг Леборна имел повреждение в области заднего конца одной из извилин на левой стороне – в нижней лобной извилине. Два года спустя Брока столкнулся с другим пациентом – неким месье Лелонгом, потерявшим речь после инсульта. Афазия Лелонга была подобна той, что имел Леборн. Вскоре пациент умер, и Брока принялся и за его мозг. Изучив мозг еще нескольких субъектов с аналогичной афазией, врач смог идентифицировать область мозга, которая отвечает за речь. Теперь она носит имя Брока. Через пятнадцать лет после этого немецкий доктор Карл Вернике, также изучивший множество пациентов с афазией, нашел еще одну область мозга (область Вернике), отвечающую за языковое восприятие.
 
Полю Брока нравилось «консервировать» мозг. За годы своей деятельности он сохранил для исследований мозг 292 мужчин и 140 женщин. Его собственный мозг также был «законсервирован» и описан в книге Карла Сагана «Мозг Брока: рассуждения о романсах науки». Сохранившиеся с тех пор образцы мозга и черепов людей с серьезными травмами сейчас изучают с помощью современных методов визуализации мозга. В 2015 году Мишель Тибо де Шоттен и его коллеги исследовали три мозга, о которых я говорил выше, с помощью технологий, которые за последнее десятилетие приобрели большую популярность у нейробиологов, – компьютерной томографии (КТ) и магнитно-резонансной томографии (МРТ). Сохраненный в формалине мозг Леборна тоже был визуализирован с помощью МРТ.
 
 Расположение области Брока и области Вернике
 
Рис. 2. Расположение области Брока и области Вернике
 
Компьютерная томография – это комбинация большого количества независимых рентгеновских снимков, снятых с разных ракурсов. Рентгеновские изображения собираются вместе при помощи компьютерных технологий и составляют общую базу данных, которая может создавать изображения в поперечном сечении. Таким образом, технология позволяет при помощи математического алгоритма, называемого цифровой геометрической обработкой, воспроизводить трехмерные реконструкции внутренностей сканируемого объекта. Череп Финеаса Гейджа исследовали с использованием этого подхода, и его давно исчезнувший мозг был реконструирован с помощью компьютерной томографии и данных реального мозга 129 здоровых людей. Идея Тибо де Шоттена и его коллег заключалась в следующем: опираясь на то, как выглядит мозг здорового человека и как он расположен в черепе, можно сказать, где именно в мозг Гейджа вошел лом. В итоге исследователи смогли восстановить картину и определить, какие нервные пути были повреждены у Гейджа в результате несчастного случая.
 
Технология МРТ основана на следующем принципе: атомные ядра в молекулах и клетках, помещенных в сильное магнитное поле, поглощают и излучают энергию радиоволн. Причина излучения этих радиоволн – наличие протонов в ядре каждого атома (например, водорода), которые действуют как крошечные магниты. В нормальной ткани ядра расположены случайным образом, но, если изменить направление магнитных полей вокруг ядер, протоны в ядрах также изменят направление и выровняются по магнитному полю. Когда магнитное поле выключается, протоны немедленно возвращаются к своей первоначальной позиции, а количество и направление изменений ядер можно обнаружить по излучению энергии. Эта энергия излучается в виде волн частотой от 3 кГц до 300 МГц (помните, что диапазон человеческого слуха составляет от 20 Гц до 20 кГц) и является областью радиолокационных волн. Энергия, выделяемая в виде электромагнитных волн этого диапазона, фокусируется в антеннах, расположенных вокруг органа, с которого снимаются данные, а компьютер обрабатывает данные об источнике излучения и реконструирует объект. При большем количестве атомов водорода (то есть большем количестве воды) в определенном виде ткани или в определенном месте органа длина излучаемой волны будет отличаться от длины волны, излучаемой из области с меньшим количеством атомов водорода. Таким образом, изображение может быть достаточно детальным и способно дать информацию о таких объектах, как колено, бедро или мозг, без необходимости делать резекцию ткани или операцию.
 
Мозг пациента Г. М. исследовали с помощью МРТ более чем за двадцать лет до его смерти, и в 1993 году эти изображения были заархивированы для дальнейшего использования. Кроме того, после смерти Г. М. в 2008 году его мозг был изъят для дальнейшего изучения. Именно тогда Г. M. стал известен как Генри Молисон, потому что медицинские работники не используют имена живых людей в публикациях или дискуссиях. Мозг Молисона законсервировали в желатине, разделив на 2401 тонкий срез, который затем был сохранен криогенным способом для будущих исследований. Каждый срез был впоследствии оцифрован фотографическим способом для создания трехмерного изображения мозга. В настоящее время существует веб-атлас мозга Молисона, который может использоваться в качестве основы для научной деятельности. Взглянуть на эти изображения довольно интересно, особенно понимая, что этот человек своей жизнью (и смертью) внес вклад в наши знания о мозге. Посмотрите на все это сами, и, возможно, вы будете впечатлены мозгом Г. М. так же, как Карл Саган – мозгом Брока.
 
Де Шоттен и его коллеги удивительно точно воссоздали поражения мозга, от которых пострадали Гейдж, Молисон и Леборн, продемонстрировав возможности данной технологии. Ученые использовали двадцать два основных проводящих пути в мозге, и им удалось определить степень повреждения, ориентируясь на эти точки в трех вариантах мозга. Более ранние работы по изучению черепа Гейджа указывали на сильные повреждения лобной доли коры головного мозга, однако исследование 2015 года скорректировало это грубое наблюдение. Поскольку ученые использовали двадцать два ориентира, чтобы обратить внимание на связи одних частей мозга с другими, они смогли определить, существовали ли еще какие-либо повреждения помимо самых явных и крупных на лобных долях и коре. Из тех связей, что имеют отношение к нашему исследованию чувств, у Гейджа на 35% был нарушен лобный орбитополярный нервный путь. Этот путь отвечает за передачу слуховых, обонятельных, зрительных и вкусовых данных в память. Вероятнее всего, память Гейджа о его личных «мадленках» была стерта из-за пережитой травмы. Если сравнить три знаменитых мозга, то очевидно, что мозговые связи Молисона, основанные на двадцати двух ориентирах, пострадали меньше других. И это, скорее всего, объясняется точностью перенесенной им операции, которая в конечном итоге привела к нарушению работы памяти. Из протокола операции и МРТ, сделанных в 1993 году, известно, что доктор Сковилл удалил несколько частей мозга, включая медиальную височно-полярную кору, миндалевидное тело, энторинальную кору, некоторую часть зубчатой извилины, гиппокамп и другие небольшие части лимбической системы. Однако работа де Шоттена и его коллег показала, что операция Молисона также затронула шесть связей, которые удалось обнаружить при помощи ориентиров. Одно из этих соединений особенно важно для органов чувств и включает переднюю комиссуру, или спайку. Эта нейронная связь влияет на реакцию обонятельного органа и действительно могла быть задета у Молисона, потому что после операции у него были большие трудности с определением запахов. Результаты двух пройденных им обонятельных тестов были ужасны. Однако Молисон мог определять предметы по их виду, а это значит, что он не потерял память и помнил, что это за вещи; скорее в результате операции он перестал четко распознавать запахи (рис. 10.3). Например, когда ему дали понюхать гвоздику, Молисон сказал, что это «свежеспиленное дерево» при первой попытке пройти тест и «мертвая рыба, выброшенная на берег» – при второй.
 
Мозг Леборна больше всего пострадал от травмы, полученной в раннем возрасте. Участок поражения включал не только область Брока, но и несколько нейронных путей, связывающих ее с областью Вернике (рис. 10.1). Затронуты были и другие области. Как именно поражение мозга повлияло на поведение Леборна и работу его органов чувств, по большей части неизвестно, потому что Брока изначально лечил его от гангрены ноги. Но, учитывая степень поражения передней спайки и почти всех из двадцати двух ориентиров на левой стороне мозга, можно предположить, что «чувственная» жизнь Леборна после травмы была сущим кошмаром. И, чтобы плеснуть еще черной краски на эту невеселую судьбу, добавлю: когда де Шоттен и его коллеги представляют результаты своей работы, они демонстрируют фотографию Гейджа с его знаменитым ломом в руках (и с очень заметной травмой головы) и снимок Молисона, сидящего с кривой улыбкой, а вот единственное сохранившееся изображение Леборна – его мозг, плавающий в банке с формалином.
 
Как Г. М. определил запахи
 
Рис. 3. Как Г. М. определил запахи (взято из работы Айхенборна и др. 1983 года)
 
Так как же нейронные связи, которые мы строим благодаря данным, собранным органами чувств, интегрируют поступившую из множества источников информацию и формируют восприятие внешнего мира? Львиная доля остальной части истории чувств включает в себя мультисенсорную интеграцию, или кроссмодальные взаимодействия. Эти взаимодействия важны для быстрой, точной, а иногда и жизненно необходимой интерпретации сенсорной информации).
 
Эти знаменитые случаи – далеко не все исследования, которые, используя клинико-анатомический метод корреляции, расширили наши знания о черепно-мозговых травмах. Одна из причин того, почему мы столько знаем о травмах мозга и их влиянии на чувства, заключается в том, что мозг находится в неправильном месте нашего организма. Природа жестоко пошутила с нами, и в результате эволюции наш мозг балансирует на тонкой шее далеко от центра тяжести. Это место прямо создано для того, чтобы при потере равновесия и падении с наибольшей вероятностью повредить мозг. В сущности, дело не в том, что мозг «поместили» туда, просто требовалось, чтобы он находился именно там – в голове на плечах. У наших непрямоходящих предков мозг был расположен в более правильном месте: ближе к центру тяжести, ближе к земле. Эволюция нашего вида привела к тому, что мозг (с точки зрения защиты от травмы) оказался в наименее подходящем месте – хуже, наверное, только разве что в ногах. И при этом люди постоянно изобретают новые творческие, трагические и глупые способы подвергнуть мозг опасности. А так как наш мозг предрасположен к травмам, то и наши чувства также подвержены нарушениям. И, как мы уже увидели, изучая травмированный мозг, можно многое узнать о его функционировании и работе чувств. Будет нелишним подробнее рассмотреть два вида травм, являющиеся бичом для современного человека: сотрясение мозга и травму головы на поле боя.
 
Когда я был в Научном центре Онтарио в Торонто, я зашел в выставочный зал Human Edge, где экспонируется устройство Hockey Helmet Head Hit, предназначенное для тестирования хоккейных шлемов. Кстати, в этот зал можно прийти с детьми – здесь масса любопытных и познавательных штук. Так вот, одна из деталей устройства – огромный красный молоток, готовый ударить по хоккейному шлему на голове манекена. Для имитации столкновения на скорости почти 20 км/ч (обычная скорость хоккеиста на поле) нужно оттянуть молоток назад, отпустить – бац! – и голова манекена содрогается от удара. Дать посетителям помахать огромным молотком со всякими ручками и рычажками – не главная цель представленной забавы: экспонат на примере национального канадского увлечения демонстрирует, насколько уязвимы наши головы. Муляж головы установлен на приборе, который измеряет силу удара молотка. Кроме того, можно выбрать место, куда именно придется удар – сбоку головы или спереди. Несколько ударов по манекену с разной скоростью – и вы осознаете, насколько опасны контактные виды спорта, такие как хоккей, даже если игрок имеет хорошую защиту. Когда я забавлялся с этой штуковиной, я содрогнулся от мысли, каково же пришлось мозгам великих игроков, таких как Горди Хоу или Бобби Орру, до эпохи шлемов в Национальной хоккейной лиге. Нет никаких сомнений, что удары по голове такой силы могут вызвать сотрясение мозга. Многие современные исследования как раз и направлены на изучение сотрясения мозга – его диагностику и влияние на работу органов чувств.
 
Каждый год во время занятий спортом травмы головного мозга получают примерно три миллиона подростков и взрослых людей. Сотрясение мозга – это лишь один из восьми способов получить черепно-мозговую травму, или ЧМТ, в результате удара головой о движущийся или неподвижный объект. Главный врач спортивной комиссии штата Нью-Йорк и медицинский советник Национальной футбольной лиги (НФЛ) Барри Джордан определяет сотрясение мозга как «сложный патофизиологический процесс, который негативно влияет на мозг и происходит под воздействием травматических биомеханических сил». Сотрясение мозга, полученное при занятиях спортом, постепенно приобретает масштабы эпидемии – пока непризнанной, но уже охватившей те страны, где популярны контактные виды спорта: американский футбол (или, если угодно, австралийский футбол), хоккей, классический футбол, бокс, регби и даже боевые искусства. Многие читатели не понаслышке знают симптомы сотрясения мозга: головокружение, тошнота, головная боль и потеря памяти. Но о природе сотрясения мозга – что это, как и почему оно возникает – пока известно не так много. Ведь удар по голове, подобный тому, что имитирует столкновение на скорости 20 км/ч при краш-тесте в Научном центре Онтарио, может даже и не привести к сотрясению, несмотря на кажущееся впечатление, что любой мозг от такого развалился бы на части.
 
Поскольку большинство черепно-мозговых травм происходит в результате несчастных случаев, чаще всего их детали неизвестны. Именно поэтому исследования сотрясения мозга сосредоточены главным образом на спортивных травмах. Телевизионные трансляции состязаний по американскому футболу очень популярны, поэтому почти каждое сотрясение мозга в НФЛ за последнее десятилетие было задокументировано. Пересматривая записи, подсчитывая сотрясения у игроков НФЛ и определяя, куда именно пришелся удар, исследователи сделали вывод, что у профессиональных игроков больше всего страдает боковая часть головы. У детей же, играющих в футбол, чаще уязвима макушка. Разница, вероятно, связана с тем, что вместе с квалификацией приходит понимание: лучше не опускать голову для отражения встречного столкновения. Этот урок я усвоил на своем горьком опыте еще в старших классах. Я получил сотрясение мозга в самом начале футбольного матча, когда отчаянно выставил голову навстречу нападающему. Этот случай научил меня держать голову выше и при ударе правильно перемещать центр тяжести, работая всем корпусом. И если для бейсбола я не подошел по физическим данным, то с футболом я завязал сам, когда понял, что мяса на моих костях недостаточно для хорошего удара с помощью центра тяжести. О, и кстати, если вам интересно, боксировал ли я хоть раз и было ли у меня сотрясение мозга, то признаюсь: да, было дело. Раз в жизни. Но соотношение честных ударов и ударов ниже пояса было настолько не в мою пользу, что тренер попросил меня снять перчатки после первой же тренировки. Итак, все мои сотрясения остались в средней школе, но я все еще помню их (по крайней мере некоторые из них), и это отнюдь не самые приятные воспоминания.
 
Характеристика черепно-мозговой травмы
 
Существует три способа изучения черепно-мозговой травмы (ЧМТ). Первый – исследование людей, проходящих лечение после черепно-мозговой травмы. Одно из важных условий для изучения ЧМТ заключается в понимании способа получения травмы, а во многих случаях неизвестны точные обстоятельства. Второй подход заключается в использовании манекена, на котором отыгрывается возможная авария, как в Научном центре Онтарио. Подобное устройство называется довольно просто: аппарат для измерения воздействия ударного ускорения на голову. Большинство исследований проводится с использованием манекена, однако некоторые исследователи используют модельные организмы – обычно грызунов. Одно из устройств для такого рода исследований называется FPI (fluid percussion injury – устройство, имитирующее травму при помощи жидкости под давлением), с его помощью жидкость быстро впрыскивается в череп животного, имитируя движение жидкости во время травмы головного мозга. Другое устройство называется CCI (controlled cortical impact), и в нем контролируется воздействие на кору головного мозга. Похожий аппарат описан в романе (и его экранизации) «Старикам тут не место», где главный герой Антон Чигур использует его для убийства своих жертв. Подопытное животное закреплено в неподвижном положении, а небольшой стержнеобразный аппарат, использующий пневматическое давление, двигает поршень, и стержень погружается в череп и в мозг. Глубина погружения и скорость поршня четко контролируются исследователями. Еще одно устройство основано на методе падающего груза Фини (Feeney weight drop): оно контролирует падение веса на череп подопытного грызуна. Существует и разновидность этого устройства – аппарат Мармароу (Marmarou weight drop), в нем голову грызуна накрывает небольшой диск, чтобы предотвратить трещину или пролом в черепе. Последний вид исследовательских инструментов связан с изучением воздействия взрывных устройств на военнослужащих в местах военных конфликтов. То есть некоторые из этих устройств имитируют получение травм при взрывах, фактически подрывая грызуна, находящегося внутри их.
 
Когда человек получает сотрясение мозга, под воздействием биомеханической силы, нарушающей нормальное положение головы, происходят вращательные движения мозга внутри черепа. Мозг движется по отношению ко всем костям в голове, за исключением структур лица, таких как хрящи носа. Верхняя ретикулярная формация головного мозга расположена в конце ствола головного мозга рядом с варолиевым мостом. Тот находится в очень закрытой части мозга, встречается у всех позвоночных и содержит несколько нервных кластеров, называемых ядрами, которые несут чрезвычайно важную информацию в мозг и из него. Ядра, проходящие через эту часть мозга, получают импульсы от других областей мозга и передают их им же. Такая архитектура мозга имеет смысл, потому что в конечном счете это древняя его часть, контролирующая самые базовые функции – физиологические и двигательные. Электрические импульсы от зрительного нерва передаются сначала именно сюда, а затем рассеиваются по другим областям. То же самое происходит с сигналами от слуховой системы: их первая остановка обычно как раз в центре мозга, прямо в середине этого кластера нервной ткани. Кроме того, импульсы от тактильных, ноцицептивных и чувствительных к температуре нервов также проходят через эту область. Происходит следующее: биомеханическое воздействие провоцирует обширное движение в головном мозге, который, в свою очередь, привязан к спинному мозгу. Это движение создает крутящий момент на верхней ретикулярной формации, что затем приводит к травме. Часто мозг реагирует на все это кратковременным отключением (то есть человек теряет сознание). Мало того, движение мозга также провоцирует контакт мозга с внутренней частью черепа, когда отражается сила первоначального воздействия. Считается, что это движение мозга вокруг своей оси, и оно вызывает удар мозга о выступы на внутренней стороне черепа, которые обычно в контакт с мозгом не вступают.
 
Возможно, еще более опасны последствия черепно-мозговой травмы, возникающие позже. Эти вторичные повреждения являются результатом ушиба головного мозга: повреждения его тканей в том месте, где произошел контакт с внутренней частью черепа, и нарушения движения спинномозговой жидкости. Повреждения включают поверхностный ушиб ткани мозга и деформацию головного мозга, произошедшую в момент столкновения с внутренней стороной черепа. Там, где происходит деформация, клетки более подвержены гибели, вследствие чего их функции утрачиваются. Кровеносные сосуды ломаются, из-за чего те нервные клетки, которые они питали, становятся нефункциональными. Физическое повреждение глии и аксонов нейронов (двух видов нервных клеток в головном мозге) вызывает прекращение нервной деятельности в травмированных клетках. И хотя первичная черепно-мозговая травма не вызывает разрыва аксонов, дальнейшее воздействие на их структуру приводит к сильнейшему растяжению аксонов до таких пределов, что нарушается электрохимический процесс. Чтобы справиться с этой проблемой, клетки начинают работать в усиленном режиме, доходят до предела и в конечном итоге «ломаются». С помощью технических средств, таких как компьютерная томография и МРТ, подобные повреждения обнаружить нельзя, поэтому для визуализации повреждения аксонов исследователи используют третье техническое достижение – диффузионно-тензорную томографию (DTI). Этот метод довольно информативен, потому что с его помощью видно положение определенных нейронных путей в мозге. Он основан на магнитном резонансе, но, в отличие от МРТ, при которой отображается общая активность в области мозга, DTI показывает проходящие через мозг конкретные пути. Этот метод в значительной степени зависит от компьютерной обработки, и он довольно дорогостоящий. Но он позволяет обнаружить посттравматические разрывы в аксонах.
 
Анатомия спортивных травм мозга
 
Представьте себе футбольный мяч, приклеенный к концу ручки клюшки для гольфа и помещенный внутрь баскетбольного мяча, при этом внутренняя поверхность баскетбольного мяча не касается внешней стороны футбольного. Если клюшка для гольфа неподвижна, футбольный мяч не контактирует с баскетбольным. Но, если клюшку хорошенечко встряхнуть, футбольный мяч начнет биться об стенки баскетбольного. Я хочу сказать, что и мозг при схожих условиях отскакивает как шар в пинболе, но это все же преувеличение: движение мозга ослабляется тем, что он прикреплен к позвоночнику и туловищу. Передняя часть мозга ударяется о переднюю стенку внутри черепа, иногда довольно жестко сталкиваясь с внутренней частью орбитальных гребней (костей, расположенных вокруг глаз), а затем отскакивает обратно. После чего задняя часть мозга бьется о заднюю поверхность внутренней части черепа. Эти ушибы называются повреждением в месте воздействия травмирующего фактора и повреждением от противоудара соответственно.
 
Многие исследования черепно-мозговых травм проводятся в военном контексте. С 2000 по 2011 год было зарегистрировано более 233 000 случаев ЧМТ среди американских военнослужащих (как мужчин, так и женщин), проходивших службу на Ближнем Востоке. Большинство травм было получено в результате взрывов самодельных и других взрывных устройств. К сожалению, голова очень уязвима при взрывах и стрельбе. Полученные при трагических обстоятельствах военные травмы (помимо миллионов спортивных травм) сделали ЧМТ основным источником данных о том, как травмы влияют на восприятие внешнего мира. Очевидно, что повреждение мозга и травмирование основного пути передачи информации от органов чувств, таких как глаза, уши, язык и нос, к мозгу влияют на функционирование нервной системы в целом и на то, как мы воспринимаем внешний мир в частности.
 
Черепно-мозговые травмы влияют на работу почти всех органов чувств. Уже сравнительно давно известно, что в результате сотрясения мозга и более тяжелых видов ЧМТ человек начинает хуже чувствовать запахи. Очевидно, что травмы носа влияют на обоняние, но при черепно-мозговых травмах также возможны повреждения обонятельных луковиц и нейронных путей от луковиц к остальным областям мозга, участвующим в интерпретации запаха, таким как таламус и миндалевидное тело, что отражается на обонятельной способности. Потеря обоняния считается одним из основных признаков возможной черепно-мозговой травмы, который в спорте можно зафиксировать сразу после особенно серьезных падений или ушибов. Но степень точности, с которой утрата обонятельных функций может использоваться для диагностики сотрясения мозга или другой травмы головного мозга, остается спорной. Тем не менее два исследования, проведенные в 2015 году на пациентах с ЧМТ (одно в Австралии и одно в Канаде), показывают, что у 50%, а то и у 66% из них наблюдается обонятельная дисфункция. Почти половина этих пациентов сильно страдает от нарушения обоняния. В США у военнослужащих, перенесших черепно-мозговые травмы после взрывов в Афганистане и Ираке, проверяли остроту обоняния. В результате получилось, что только в 35% случаев можно было соотнести фактическую видимую черепно-мозговую травму с обонятельной дисфункцией. Часть проблемы определения корреляции потери обоняния с черепно-мозговыми травмами заключается в тестах, разработанных для обнаружения этой дисфункции. Инструмент со странным названием Sniffin’ Sticks test – один из наиболее популярных тестов, который может показать результаты, отличные от UPSIT-теста, разработанного в Пенсильванском университете.
 
Только в редких случаях при проблемах с обонянием у пациентов с ЧМТ используется клинико-анатомический корреляционный метод. Но развитие технологии диффузионно-тензорной томографии может стать важным методом для изучения черепно-мозговых травм и их влияния на проводящие пути головного мозга. У пациентов, перенесших повреждения лобных долей в результате ЧМТ, часто возникают обонятельные и вкусовые галлюцинации, и чаще всего это действительно неприятные запахи или вкусы. Подобная дисфункция подтверждает хорошо известную связь этих двух чувств с лобной долей головного мозга. Наименее всего изучено влияние черепно-мозговых травм и сотрясений мозга на чувство вкуса, но те, кто знаком с сотрясением мозга, вероятно, еще помнят тот металлический привкус во рту. Эта вкусовая галлюцинация называется парагевзией. Чаще всего металлический привкус вызван не дисфункцией вкусовых рецепторов на языке или связей с мозгом, участвующих в восприятии вкуса, а скорее всего, это проявление воздействия на ту область мозга, что отвечает за обоняние. (Здесь есть важный момент, когда будем подробнее разбирать, как чувства взаимодействуют друг с другом.) Полная утрата вкусовой чувствительности (агевзия) в результате черепно-мозговой травмы указывает на некоторую дисфункцию восприятия вкуса как такового.
 
Осязание тоже плохо изучено в контексте черепно-мозговых травм. Однако известно, что оно тоже страдает при повреждении теменной доли головного мозга. При таких травмах человек испытывает покалывание кожи и другие сенсорные ощущения. Теменная доля – это место, где обрабатываются импульсы от тактильных органов (многих видов сенсорных рецепторных клеток на коже).
 
Влияние черепно-мозговых травм на зрение изучали на военнослужащих, пострадавших от взрывов. Исследование показало, что при взрывах случаются все виды нарушений зрения, причем при этом довольно распространена дисфункция глазодвигательного нерва. Это моторное явление затрагивает движение глаз и приводит к проблемам с фокусировкой и чтением. Сейчас разрабатывается инструмент диагностики, основанный на компьютерном отслеживании движения глаз, который можно будет использовать при ЧМТ для оценки возможных улучшений зрительной системы у лиц, пострадавших от взрывов, после терапии. Другие симптомы черепно-мозговых травм, затрагивающих органы зрения, относятся к так называемым функциям высшего порядка: чувствительность к свету, нарушение навыка чтения и время реакции на визуальные объекты. Влияние на навык чтения важно, потому что оно предполагает, что проблема не полностью связана с двигательными функциями. Некоторые люди с ЧМТ жалуются, что они постоянно теряют то место в тексте, где читают, и не могут понять прочитанную информацию. Эти симптомы указывают на проблемы интерпретации воспринимаемой глазами информации как на процессы более высокого порядка.
 
У людей, перенесших сотрясение, иногда наблюдается и потеря слуха, которая в некоторых случаях тоже может использоваться для диагностики повреждений головного мозга. Если проанализировать ЧМТ у военнослужащих, нетрудно представить себе воздействие взрывных устройств на слуховую и вестибулярную системы человека. В одном из первых систематических и всесторонних анализов воздействия взрывов на американских военнослужащих Сара Теодоров и ее коллеги разобрали более восьмисот публикаций, посвященных этой теме. Их результаты показывают, что потеря слуха действительно стала последствием взрывов. Любопытная деталь: потеря слуха у испытуемых неотделима от тиннитуса – постоянного шума в ушах при отсутствии источника звука.
 
Шум в ушах бывает двух видов. Первый – пульсирующий. Он появляется, когда усиливается сердцебиение и человек слышит стук собственного сердца. Все остальные проявления шума в ушах классифицируются как непульсирующие. Есть много причин для возникновения каждого из видов тиннитуса, но военнослужащие, подвергшиеся воздействию взрывной волны, страдают от них всех. К ним относятся прямая травма внутреннего уха – перелом височной кости, лабиринтное сотрясение мозга, разрыв костной цепи (молоточек, наковальня и стремечко), а также баротравма (следствие резкого изменения давления воздуха) и шумовая травма. Кроме того, травма шеи и нервной системы (например, слухового нерва, ведущего к мозгу, или области мозга, участвующей в обработке слуховых сигналов) также приведет к появлению тиннитуса. Как показывают примеры, полученные при помощи диффузионно-тензорной томографии мозга, любая травма сильно затрагивает чувства. Только здоровый мозг обеспечивает правильное сенсорное восприятие, но, к сожалению, очень многие травмы и физические изменения мозга могут привести к сенсорной дисфункции.
 

«Каждый из нас сам отвечает за то, что попадает в наш мозг, что будет волновать нас в зрелости и что мы будем знать»

Карл Саган

Научный подход на Google Play

Файлы

Глаз и мозг. Психология зрительного восприятия

Энциклопедия чудес

Введение в математическую философию

Головоломки проблемы сознания: концепция Дэниела Деннета