Управление наследственностью

Управление наследственностью

Четверо из каждой сотни людей рождаются с наследственными болезнями. Болезни эти до сих пор лечатся с большим трудом, а до недавнего времени и совсем не поддавались лечению. Вот, например, фенилкетонурия. В организме больного не синтезируется фермент, перерабатывающий аминокислоту, — фенилаланин. В результате ребенок вырастает слабоумным. Оказалось, что если такого ребенка определенное время кормить пищей, в которой фенилаланина нет, то он вырастает вполне здоровым. А вот дети у него могут родиться больными. 
 
Сравним это со следующей картиной. Завод выпускает машины, собранные по неверному чертежу. Каждую из таких машин можно исправить, но несравненно лучше было бы внести исправление в исходный чертеж. Тогда с заводского конвейера будут сходить бездефектные машины. Так вот, исправлять наследственность на уровне чертежа, то есть на уровне зародышевой клетки, мы пока не умеем. Во многих случаях мы пока вообще не в состоянии помочь такому больному, даже зная причину болезни. Например, распространенная у некоторых африканских народов серповидноклеточная анемия (белокровие) объясняется тем, что организм больного производит гемоглобин, отличающийся от нормального всего-навсего одним из аминокислотных остатков. Причина известна, но лечения этой болезни пока нет. 
 
Лишь в самое последнее время наметились пути решения проблемы управления наследственностью. Известно, что наследственная информация записана в молекулах ДНК. Каждый знак генетического кода составляется из нуклеотидов, собранных в определенном порядке. 
 
Но почему именно такая структура определяет данные функции, пока неясно. Носить часы или смотреть телевизор еще недостаточно для того, чтобы уметь разобраться в их устройстве, чтобы понимать, для чего нужны именно данное колесико в часах или данная радиолампа в телевизоре. А тут перед нами молекулярная «машина» клетки, неизмеримо более сложная, чем самое сложное техническое устройство. Мы уже видим, как она работает, но пока еще не знаем, почему так, а не иначе. 
 
Чтобы сделать следующий шаг в познании секретов жизни, нужно связать функцию и структуру каждой детали — молекулы в «машине» клетки. Одни ученые пытаются решить эту задачу, сравнивая молекулы различной структуры. Так, разбирая несколько замков различной конструкции и подбирая свой ключ к каждому из них, можно догадаться, как же эти замки действуют. 
 
Второй путь — более активный — называется методом химической модификации. Если химически изменять каждый участок молекулы, звено за эвеном, то можно увидеть, изменение какого звена связано с изменением функций всей молекулы. По характеру этого изменения можно судить о том, какая именно химическая структура определяет данные функции. Если же изменение того или иного звена не приводит к изменению функций, то, следовательно, данный участок молекулы в выполнении этой функции не участвует. 
 
На этот метод сейчас возлагаются наибольшие надежды. Однако не нужно думать, что это очень простое дело. Большинство современных химических реагентов действуют сразу на два или даже на три азотистых основания в молекуле нуклеиновых кислот. А ведь нужно подействовать только на одно азотистое основание, не затронув других (всего их, как известно, четыре). 
 
Многого здесь ученые уже добились. Так, в Институте химии природных соединений АН СССР член-корреспондент АН СССР Н. К. Кочетков и доктор химических наук Э. И. Будовский нашли химическое вещество, которое действует только на одно из азотистых оснований (цитозин). Но и этого оказалось мало. Ведь каждая молекула нуклеиновой кислоты, даже такой сравнительно простой, как т-РНК, содержит большое число одинаковых азотистых оснований (валиновая т-РНК, например, содержит 19 остатков цитозина). Одинаковые остатки, конечно, неразличимы по своим химическим свойствам, однако, находясь в разных участках молекулы нуклеиновой кислоты, они выполняют, по-видимому, различные функции. 
 
А нельзя ли создать такие химические реагенты, которые будут действовать избирательно— только на азотистые основания, находящиеся в окружении определенных соседей? 
 
Такие реагенты уже созданы. Это небольшие кусочки цепи нуклеиновой кислоты, к которой присоединена активная химическая группа. Напомним, что молекула ДНК состоит из двух спиралей, соединенных водородными связями. При делении клетки эти две спирали молекулы ДНК расходятся, и каждая из них достраивает себе вторую. Как известно, в молекуле ДНК порядок азотистых оснований в одной спирали строго определяет порядок их и в другой, например против аденина может стоять только тимин. Поэтому когда спирали расходятся, то напротив каждого аденина в одной спирали становится тимин в другой, а напротив тимина, соответственно, становится аденин. 
 
Вот этот-то механизм и решили использовать ученые. Если мы имеем, скажем, звено молекулы нуклеиновой кислоты, где подряд стоят три аденина и один гуанин (сокращенно— АААГ), то его найдет химический ре- агент, в котором активная группа (обозначим ее буквой X) связана с тремя тиминами. При этом наша активная группа химически провзаимодействует только с гуанином, стоящим рядом с тремя аденинами, и ни с каким другим. Такой химический реагент назвали мутагеном с адресом. Роль адреса выполняет кусочек цепи нуклеиновой кислоты. В нашем 
случае это три тимина, а мутаген — активная группа, которая, взаимодействуя с данным звеном цепи нуклеиновой кислоты, может изменить наследственность. 
 
Самое важное здесь то, что в данном случае мутация строго определена. Все мутагены, употреблявшиеся до сих пор (рентгеновские лучи, химические вещества и т. п.), вызывали лишь увеличение общего числа мутаций. Среди миллионов бесполезных и вредных мутаций изредка появлялись и полезные, которые и закреплялись в потомстве с помощью отбора. Именно так были выведены разновидности микроорганизмов, которые производят в сотни раз больше антибиотиков (например, пенициллина), чем их прародители. 
 
Кроме создания мутагенов с адресом есть еще один путь, который может привести к управлению наследственностью, — химический синтез молекул нуклеиновых кислот с заданным строением. Изучая функции таких молекул, можно будет установить роль любого их звена, то есть любого гена. Вполне вероятно, что искусственно синтезированные гены удастся вводить в клетки с помощью безвредных вирусов. Когда такая задача будет решена, сначала станет возможным ликвидировать все наследственные болезни, а затем встанет вопрос и об улучшении наследственности человека. 
 
Большие надежды на управление наследственностью возлагаются в последние годы на пересадку генов — методы так называемой генной инженерии. Для этого нужно прежде всего научиться разрезать молекулы нуклеи- новых кислот по определенным участкам. Адресованные реагенты позволяют решить и эту задачу. Для этого нужно подобрать группу X так, чтобы она после присоединения в определенном месте к ДНК ослабляла бы химические связи, удерживающие между собой отдельные мономеры. Эта задача также решена: с помощью адресованных реагентов уже удается разрезать на определенные куски большие молекулы ДНК (например, ДНК некоторых бактериофагов). До сих пор в генной инженерии для такого разрезания пользовались только получаемыми из некоторых микроорганизмов ферментами рестрикции. 
 
Однако эти ферменты разрезают молекулы ДНК по очень ограниченному набору последовательностей. Адресованные же реагенты позволяют провести расщепление цепочки ДНК по любому желаемому месту — достаточно только изменить адрес. 
 
А. С. Трошин, член-корреспондент АН СССР, 1979 год 

«Участь каждого из нас трагична. Мы все одиноки. Любовь, сильные привязанности, творческие порывы иногда позволяют нам забыть об одиночестве, но эти триумфы — лишь светлые оазисы, созданные нашими собственными руками, конец пути всегда обрывается во мраке: каждого встречает смерть один на один»

Чарлз Сноу

Научный подход на Google Play

Файлы

Речь и мышление ребенка

Научный метод познания. Ключ к решению любых задач

Анатомия разума

Тюремные тетради